Mono-ubiquitination of lysine 18 on histone H3 (H3K18ub), catalyzed by UHRF1, is a DNMT1 docking site that facilitates replication-coupled DNA methylation maintenance. Its functions beyond this are unknown. Here, we genomically map simultaneous increases in UHRF1-dependent H3K18ub and SUV39H1/H2-dependent H3K9me3 following DNMT1 inhibition.
View Article and Find Full Text PDFGliomas are one of the most common and lethal brain tumors among adults. One process that contributes to glioma progression and recurrence is the epithelial to mesenchymal transition (EMT). EMT is regulated by a set of defined transcription factors which tightly regulate this process, among them is the basic helix-loop-helix family member, TWIST1.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) is associated with multiple human malignancies. To evade immune detection, EBV switches between latent and lytic programs. How viral latency is maintained in tumors or in memory B cells, the reservoir for lifelong EBV infection, remains incompletely understood.
View Article and Find Full Text PDFDNMT3B is known as a de novo DNA methyltransferase. However, its preferential target sites for DNA methylation are largely unknown. Our analysis on ChIP-seq experiment in human embryonic stem cells (hESC) revealed that DNMT3B, mCA and H3K36me3 share the same genomic distribution profile.
View Article and Find Full Text PDFThe zinc finger CCCTC-binding protein (CTCF) carries out many functions in the cell. Although previous studies sought to explain CTCF multivalency based on sequence composition of binding sites, few examined how CTCF post-translational modification (PTM) could contribute to function. Here, we performed CTCF mass spectrometry, identified a novel phosphorylation site at Serine 224 (Ser-P), and demonstrate that phosphorylation is carried out by Polo-like kinase 1 (PLK1).
View Article and Find Full Text PDFThe coactivator-associated arginine methyltransferase (CARM1) functions as a regulator of transcription by methylating a diverse array of substrates. To broaden our understanding of CARM1's mechanistic actions, we sought to identify additional substrates for this enzyme. To do this, we generated CARM1 substrate motif antibodies, and used immunoprecipitation coupled with mass spectrometry to identify cellular targets of CARM1, including mediator complex subunit 12 (MED12) and the lysine methyltransferase KMT2D.
View Article and Find Full Text PDFThe centromere regulates proper chromosome segregation, and its dysfunction is implicated in chromosomal instability (CIN). However, relatively little is known about how centromere dysfunction occurs in cancer. Here, we define the consequences of phosphorylation by cyclin E1/CDK2 on a conserved Ser18 residue of centromere-associated protein CENP-A, an essential histone H3 variant that specifies centromere identity.
View Article and Find Full Text PDFNUT midline carcinoma (NMC) is a uniformly lethal malignancy that is defined by rearrangement of the nuclear protein in testis (NUT) gene on chromosome 15q14. NMCs are morphologically indistinguishable from other poorly differentiated carcinomas, and the diagnosis is usually made currently by fluorescence in situ hybridization (FISH). As normal NUT expression is confined to testis and ovary, we reasoned that an immunohistochemical (IHC) stain for NUT would be useful in diagnosing NMC.
View Article and Find Full Text PDFIntroduction: Basal-like breast cancers (BLBC) frequently overexpress the epidermal growth factor receptor (EGFR) and subsequently have high levels of signaling through the MAP kinase pathway, which is thought to contribute to their aggressive behavior. While we have previously reported the expression of Y-box binding protein-1 (YB-1) in 73% of BLBC, it is unclear whether it can be regulated by a component of the MAP kinase signaling pathway. Phosphorylation of YB-1 at the serine 102 residue is required for transcriptional activation of growth-enhancing genes, such as EGFR.
View Article and Find Full Text PDFGenetic experiments have identified two structurally similar nucleosomal domains, SIN and LRS, required for transcriptional repression at genes regulated by the SWI/SNF chromatin remodeling complex or for heterochromatic gene silencing, respectively. Each of these domains consists of histone H3 and H4 L1 and L2 loops that form a DNA-binding surface at either superhelical location (SHL) +/-2.5 (LRS) or SHL +/-0.
View Article and Find Full Text PDFPost-translational modifications of histones influence both chromatin structure and the binding and function of chromatin-associated proteins. A major limitation to understanding these effects has been the inability to construct nucleosomes in vitro that harbor homogeneous and site-specific histone modifications. Here, we describe a native peptide ligation strategy for generating nucleosomal arrays that can harbor a wide range of desired histone modifications.
View Article and Find Full Text PDFThe histone acetyltransferase (HAT) GCN5 is the founding member for a family of chromatin remodeling enzymes. GCN5 is the catalytic subunit of a large multi-subunit complex that functions in the regulation of gene activation via acetylation of lysine residues within the N-terminal tails of core histone proteins. Using acetyl-CoA as a co-substrate, the high affinity binding of acetyl-CoA is a critical first step in the reaction.
View Article and Find Full Text PDF