Publications by authors named "Christopher J Franks"

Glutamatergic neurotransmission is evolutionarily conserved across animal phyla. A major class of glutamate receptors consists of the metabotropic glutamate receptors (mGluRs). In C.

View Article and Find Full Text PDF

Dissecting the function of neural circuits requires the capability to stimulate and record from the component neurones. Optimally, the methods employed should enable precise activation of distinct elements within the circuit and high-fidelity readout of the neuronal response. Here we compare two methods for neural stimulation in the pharyngeal system of Caenorhabditis elegans by evoking postsynaptic potentials (PSPs) either by electrical stimulation or by expression of the channelrhodopsin [ChR2(gf)] in cholinergic neurones of the pharyngeal circuit.

View Article and Find Full Text PDF

Invertebrate neuroscience has provided a number of very informative model systems that have been extensively utilized in order to define the neurobiological bases of animal behaviours (Sattelle and Buckingham in Invert Neurosci 6:1-3, 2006). Most eminent among these are a number of molluscs, including Aplysia californica, Lymnaea stagnalis and Helix aspersa, crustacean systems such as the crab stomatogastric ganglion and a wide-range of other arthropods. All of these have been elegantly exploited to shed light on the very important phenomenon of the molecular and cellular basis for synaptic regulation that underpins behavioural plasticity.

View Article and Find Full Text PDF

The nervous system of C. elegans has a remarkable abundance of flp genes encoding FMRFamide-like (FLP) neuropeptides. To provide insight into the physiological relevance of this neuropeptide diversity, we have tested more than 30 FLPs (encoded by 23 flps) for bioactivity on C.

View Article and Find Full Text PDF

K+ channels that possess two pore domains in each channel subunit are common in many animal tissues. Such channels are generated from large families of subunits and are implicated in several functions, including temperature sensation, responses to ischaemia, K+ homeostasis and setting the resting potential of the cell. Their activity can be modulated by polyunsaturated fatty acids, pH and oxygen, and some are candidate targets of volatile anaesthetics.

View Article and Find Full Text PDF

Genetics, genomics and electrophysiology are transforming our understanding of the nicotinic acetylcholine receptors (nAChRs). Caenorhabditis elegans contains the largest known family of nAChR subunit genes (27 members), while Drosophila melanogaster contains an exclusively neuronal nAChR gene family (10 members). In C.

View Article and Find Full Text PDF

The pharynx of C. elegans is a rhythmically active muscle that pumps bacteria into the gut of the nematode. This activity is maintained by action potentials, which qualitatively bear a resemblance to vertebrate cardiac action potentials.

View Article and Find Full Text PDF