Publications by authors named "Christopher J DeSantis"

Aluminum nanocrystals have emerged as an earth-abundant material for plasmonics applications. Al nanocrystals readily oxidize in aqueous-based solutions, however, transforming into highly stratified γ-AlOOH nanoparticles with a 700% increase in surface area in a matter of minutes. Here we show that by functionalizing Al nanocrystals with the bioinspired polymer polydopamine, their stability in aqueous media is dramatically increased, maintaining their integrity in aqueous solution for over 2 weeks with no discernible structural changes.

View Article and Find Full Text PDF

The precise size- and shape-controlled synthesis of monodisperse Al nanocrystals remains an open challenge, limiting their utility for numerous applications that would take advantage of their size and shape-dependent optical properties. Here we pursue a molecular-level understanding of the formation of Al nanocrystals by titanium(IV) isopropoxide-catalyzed decomposition of AlH in Lewis base solvents. As determined by electron paramagnetic resonance spectroscopy of intermediates, the reaction begins with the formation of Ti-AlH complexes.

View Article and Find Full Text PDF

The challenge of controllable chemical synthesis of aluminum nanocrystals (Al NCs) has been met with only limited success. A major barrier is the absence of effective ligands to control the nucleation and growth of Al NCs. Here we demonstrate the size- and shape-controlled synthesis of monodisperse Al NCs using a polymer ligand, cumyl dithiobenzoate-terminated polystyrene (CDTB-PS).

View Article and Find Full Text PDF

Al nanocrystals can be synthesized by high-temperature decomposition of triisobutyl aluminum, creating a mixture of nanoparticle geometries with a significant fraction (∼15%) being single-crystalline Al nanorods. The Al nanorods are elongated along their ⟨110⟩ direction, and generally exhibit hexagonal cross sections consisting of two adjacent {111} facets separated by {100} facets on opposite sides. Dark-field scattering spectroscopy of individual Al nanorods reveals that rods of varying aspect ratios all possess transverse quadrupolar and octupolar modes in the visible (2-3 eV) and ultraviolet (3-5 eV) regimes.

View Article and Find Full Text PDF

There is currently a worldwide need to develop efficient photocatalytic materials that can reduce the high-energy cost of common industrial chemical processes. One possible solution focuses on metallic nanoparticles (NPs) that can act as efficient absorbers of light due to their surface plasmon resonance. Recent work indicates that small NPs, when photoexcited, may allow for efficient electron or hole transfer necessary for photocatalysis.

View Article and Find Full Text PDF

The use of earth-abundant materials is at the frontier of nanoplasmonics research, where their availability and low cost can enable practical mainstream applications and commercial viability. Aluminum is of specific interest in this regard, due to its ability to support plasmon resonances throughout the ultraviolet (UV), visible, and infrared regions of the spectrum. However, the lack of accurate dielectric data has critically limited the agreement between theoretical predictions and experimental measurements of the optical properties of Al nanostructures compared, for example, to the agreement enjoyed by the noble/coinage metals.

View Article and Find Full Text PDF

The optical properties of metallic nanoparticles with plasmon resonances have been studied extensively, typically by measuring the transmission of light, as a function of wavelength, through a nanoparticle suspension. One question that has not yet been addressed, however, is how an image is transmitted through such a suspension of absorber-scatterers, in other words, how the various spatial frequencies are attenuated as they pass through the nanoparticle host medium. Here, we examine how the optical properties of a suspension of plasmonic nanoparticles affect the transmitted image.

View Article and Find Full Text PDF

The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g.

View Article and Find Full Text PDF

Branched nanocrystals display interesting optical and catalytic properties on account of their high surface areas and tips with small radii of curvatures. However, many synthetic routes toward branched nanocrystals result in inhomogeneous samples on account of asymmetric branching. Seed-mediated coreduction is a recently developed route to symmetrically branched nanocrystals where the symmetry of the seeds is transferred to the final stellated morphologies.

View Article and Find Full Text PDF

Au/Pd octopods were synthesized with enhanced sample homogeneity through the use of aromatic additives. This increase in sample monodispersity facilitates large-area periodic assembly of stellated metal nanostructures for the first time. The aromatic additives were also found to influence the structures of the stellated nanocrystals with subtle shape modifications observed that can alter the packing arrangement of the Au/Pd octopods.

View Article and Find Full Text PDF

Au/Pd octopods with hollow, cubic interiors and Oh symmetry were synthesized for the first time by etching core@shell Pd@Au/Pd octopods to selectively remove their Pd interiors. Integration of multiple architectural features - in this case branching symmetry, composition, and interior design - into one nanostructure provides design strategies to new plasmonic colloids.

View Article and Find Full Text PDF

Branched metal nanoparticles often display unique physicochemical properties on account of their structures; however, most examples are asymmetric, with branches randomly distributed from the cores of the nanoparticles. This asymmetry can give rise to variable properties between samples. Here, we report the synthesis of symmetrically branched Au/Pd nanocrystals including five-branched pentapods with D(3h) symmetry, 24-branched nanocrystals with O(h) symmetry, 12-branched nanocrystals with T(d) symmetry, and eight-branched octopods and bowties with O(h) and D(4h) symmetry, respectively.

View Article and Find Full Text PDF

Au/Pd octopods, nanostructures with eight branches and a primarily Au interior, have been synthesized as size-controlled samples through the manipulation of seed-mediated co-reduction. The position of their localized surface plasmon resonance can be controllably tuned throughout the visible and near-infrared regions, and this response is correlated with the structural features (branch length and tip width) of the octopods. These Au/Pd octopods were also found to be highly sensitive to changes in the local refractive index of the surrounding media and suitable substrates for surface enhanced Raman spectroscopy.

View Article and Find Full Text PDF

Gold-palladium octopods and new concave and shape-controlled alloy nanostructures are synthesized by seed-mediated co-reduction, wherein two metal precursors are reduced in the presence of seeds that serve as preferential sites for the growth of the larger nanostructures. Here, the first comprehensive study of this technique is presented in a model Au-Pd system and provides insight into the mechanism of formation for these architecturally distinct nanocrystals. A systematic evaluation of synthesis conditions decoupled the roles of (i) Au:Pd precursor ratio, (ii) reaction pH, and (iii) capping agent concentration in morphology development.

View Article and Find Full Text PDF

Au/Pd octopods and concave core@shell Au@Pd nanocrystals have been prepared by coupling for the first time a seed-mediated synthetic method with co-reduction. The integration of these two methods is central to the formation of these binary Au/Pd nanocrystals wherein the kinetics of seeded growth are manipulated via the co-reduction technique to control the final morphology of the nanocrystals. Significantly, the synthesis of these structures under similar reaction conditions illustrates that they are structurally related kinetic products.

View Article and Find Full Text PDF