Cells counter accumulation of misfolded secretory proteins in the endoplasmic reticulum (ER) through activation of the Unfolded Protein Response (UPR). Small molecules termed chemical chaperones can promote protein folding to alleviate ER stress. The bile acid tauroursodeoxycholic acid (TUDCA), has been described as a chemical chaperone.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNASer variants on fly development, lifespan, and behaviour.
View Article and Find Full Text PDFMistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In Drosophila melanogaster, a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are vital in determining the specificity of translation. Mutations in tRNA genes can result in the misincorporation of amino acids into nascent polypeptides in a process known as mistranslation. Since mistranslation has different impacts, depending on the type of amino acid substitution, our goal here was to compare the impact of different mistranslating tRNA variants on fly development, lifespan, and behaviour.
View Article and Find Full Text PDFMistranslation is the misincorporation of an amino acid into a polypeptide. Mistranslation has diverse effects on multicellular eukaryotes and is implicated in several human diseases. In , a serine transfer RNA (tRNA) that misincorporates serine at proline codons (P→S) affects male and female flies differently.
View Article and Find Full Text PDFTranslation fidelity relies on accurate aminoacylation of transfer RNAs (tRNAs) by aminoacyl-tRNA synthetases (AARSs). AARSs specific for alanine (Ala), leucine (Leu), serine, and pyrrolysine do not recognize the anticodon bases. Single nucleotide anticodon variants in their cognate tRNAs can lead to mistranslation.
View Article and Find Full Text PDFTra1 is an essential coactivator protein of the yeast SAGA and NuA4 acetyltransferase complexes that regulate gene expression through multiple mechanisms including the acetylation of histone proteins. Tra1 is a pseudokinase of the PIKK family characterized by a C-terminal PI3K domain with no known kinase activity. However, mutations of specific arginine residues to glutamine in the PI3K domains (an allele termed tra1Q3) result in reduced growth and increased sensitivity to multiple stresses.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) maintain translation fidelity through accurate charging by their cognate aminoacyl-tRNA synthetase and codon:anticodon base pairing with the mRNA at the ribosome. Mistranslation occurs when an amino acid not specified by the genetic message is incorporated into proteins and has applications in biotechnology, therapeutics and is relevant to disease. Since the alanyl-tRNA synthetase uniquely recognizes a G3:U70 base pair in tRNA and the anticodon plays no role in charging, tRNA variants with anticodon mutations have the potential to mis-incorporate alanine.
View Article and Find Full Text PDFGene expression undergoes considerable changes during the aging process. The mechanisms regulating the transcriptional response to cellular aging remain poorly understood. Here, we employ the budding yeast Saccharomyces cerevisiae to better understand how organisms adapt their transcriptome to promote longevity.
View Article and Find Full Text PDFTransfer RNA variants increase the frequency of mistranslation, the misincorporation of an amino acid not specified by the "standard" genetic code, to frequencies approaching 10% in yeast and bacteria. Cells cope with these variants by having multiple copies of each tRNA isodecoder and through pathways that deal with proteotoxic stress. In this study, we define the genetic interactions of the gene encoding tRNASerUGG,G26A, which mistranslates serine at proline codons.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) are the adaptor molecules required for reading the genetic code and producing proteins. Transfer RNA variants can lead to genome-wide mistranslation, the misincorporation of amino acids not specified by the standard genetic code into nascent proteins. While genome sequencing has identified putative mistranslating transfer RNA variants in human populations, little is known regarding how mistranslation affects multicellular organisms.
View Article and Find Full Text PDFCandida albicans is the most common cause of death from fungal infections. The emergence of resistant strains reducing the efficacy of first-line therapy with echinocandins, such as caspofungin calls for the identification of alternative therapeutic strategies. Tra1 is an essential component of the SAGA and NuA4 transcriptional co-activator complexes.
View Article and Find Full Text PDFTransfer RNA (tRNA) variants that alter the genetic code increase protein diversity and have many applications in synthetic biology. Since the tRNA variants can cause a loss of proteostasis, regulating their expression is necessary to achieve high levels of novel protein. Mechanisms to positively regulate transcription with exogenous activator proteins like those often used to regulate RNA polymerase II (RNAP II)-transcribed genes are not applicable to tRNAs as their expression by RNA polymerase III requires elements internal to the tRNA.
View Article and Find Full Text PDFMistranslation, the misincorporation of an amino acid not specified by the "standard" genetic code, occurs in all organisms. tRNA variants that increase mistranslation arise spontaneously and engineered tRNAs can achieve mistranslation frequencies approaching 10% in yeast and bacteria. Interestingly, human genomes contain tRNA variants with the potential to mistranslate.
View Article and Find Full Text PDFNon-proteinogenic amino acids, such as the proline analog L-azetidine-2-carboxylic acid (AZC), are detrimental to cells because they are mis-incorporated into proteins and lead to proteotoxic stress. Our goal was to identify genes that show chemical-genetic interactions with AZC in and thus also potentially define the pathways cells use to cope with amino acid mis-incorporation. Screening the yeast deletion and temperature sensitive collections, we found 72 alleles with negative chemical-genetic interactions with AZC treatment and 12 alleles that suppress AZC toxicity.
View Article and Find Full Text PDFAs the adaptor that decodes mRNA sequence into protein, the basic aspects of tRNA structure and function are central to all studies of biology. Yet the complexities of their properties and cellular roles go beyond the view of tRNAs as static participants in protein synthesis. Detailed analyses through more than 60 years of study have revealed tRNAs to be a fascinatingly diverse group of molecules in form and function, impacting cell biology, physiology, disease and synthetic biology.
View Article and Find Full Text PDFMistranslation occurs when an amino acid not specified by the standard genetic code is incorporated during translation. Since the ribosome does not read the amino acid, tRNA variants aminoacylated with a non-cognate amino acid or containing a non-cognate anticodon dramatically increase the frequency of mistranslation. In a systematic genetic analysis, we identified a suppression interaction between tRNA, which mistranslates proline codons by inserting serine, and , a temperature sensitive allele of the gene encoding an acetyltransferase required for sister chromatid cohesion.
View Article and Find Full Text PDFTransfer RNAs (tRNAs) read the genetic code, translating nucleic acid sequence into protein. For tRNA the anticodon does not specify its aminoacylation. For this reason, mutations in the tRNA anticodon can result in amino acid substitutions, a process called mistranslation.
View Article and Find Full Text PDFTransfer RNAs are required to translate genetic information into proteins as well as regulate other cellular processes. Nucleotide changes in tRNAs can result in loss or gain of function that impact the composition and fidelity of the proteome. Despite links between tRNA variation and disease, the importance of cytoplasmic tRNA variation has been overlooked.
View Article and Find Full Text PDFChromatin remodeling regulates gene expression in response to the accumulation of misfolded polyQ proteins associated with Huntington's disease (HD). Tra1 is an essential component of both the SAGA/SLIK and NuA4 transcription co-activator complexes and is linked to multiple cellular processes, including protein trafficking and signaling pathways associated with misfolded protein stress. Cells with compromised Tra1 activity display phenotypes distinct from deletions encoding components of the SAGA and NuA4 complexes, indicating a potentially unique regulatory role of Tra1 in the cellular response to protein misfolding.
View Article and Find Full Text PDFPerfectly accurate translation of mRNA into protein is not a prerequisite for life. Resulting from errors in protein synthesis, mistranslation occurs in all cells, including human cells. The human genome encodes >600 tRNA genes, providing both the raw material for genetic variation and a buffer to ensure that resulting translation errors occur at tolerable levels.
View Article and Find Full Text PDFThe molecular mechanisms of translation are highly conserved in all organisms indicative of a single evolutionary origin. This includes the molecular interactions of tRNAs with their cognate aminoacyl-tRNA synthetase, which must be precise to ensure the specificity of the process. For many tRNAs, the anticodon is a major component of the specificity.
View Article and Find Full Text PDFThe KAT5 (Tip60/Esa1) histone acetyltransferase is part of NuA4, a large multifunctional complex highly conserved from yeast to mammals that targets lysines on H4 and H2A (X/Z) tails for acetylation. It is essential for cell viability, being a key regulator of gene expression, cell proliferation, and stem cell renewal and an important factor for genome stability. The NuA4 complex is directly recruited near DNA double-strand breaks (DSBs) to facilitate repair, in part through local chromatin modification and interplay with 53BP1 during the DNA damage response.
View Article and Find Full Text PDFTra1 is an essential component of the SAGA/SLIK and NuA4 complexes in , recruiting these co-activator complexes to specific promoters. As a PIKK family member, Tra1 is characterized by a C-terminal phosphoinositide 3-kinase (PI3K) domain. Unlike other PIKK family members (, Tor1, Tor2, Mec1, Tel1), Tra1 has no demonstrable kinase activity.
View Article and Find Full Text PDFHigh-fidelity translation and a strictly accurate proteome were originally assumed as essential to life and cellular viability. Yet recent studies in bacteria and eukaryotic model organisms suggest that proteome-wide mistranslation can provide selective advantages and is tolerated in the cell at higher levels than previously thought (one error in 6.9 × 10 in yeast) with a limited impact on phenotype.
View Article and Find Full Text PDF