Unlabelled: is an anaerobic and thermophilic bacterium that has been genetically engineered for ethanol production at very high yields. However, the underlying reactions responsible for electron flow, redox equilibrium, and how they relate to ethanol production in this microbe are not fully elucidated. Therefore, we performed a series of genetic manipulations to investigate the contribution of hydrogenase genes to high ethanol yield, generating evidence for the importance of hydrogen-reacting enzymes in ethanol production.
View Article and Find Full Text PDFBackground: Ultrasound guidance can reduce the number of attempts to gain peripheral IV access while improving the success rate and satisfaction in patients with difficult IV access. Education and simulation are effective tools for improving the skills and knowledge related to ultrasound-guided peripheral IV access. Ultrasound phantom models allow for skill development without the risk of patient harm.
View Article and Find Full Text PDFBackground: Telomere length is reduced in persons with heart failure (HF). Inflammation is a putative mechanism contributing to telomere shortening. Although physical activity is known to increase telomere length, its effects in HF are unknown.
View Article and Find Full Text PDFCocultures of engineered thermophilic bacteria can ferment lignocellulose without costly pretreatment or added enzymes, an ability that can be exploited for low cost biofuel production from renewable feedstocks. The hemicellulose-fermenting species Thermoanaerobacterium thermosaccharolyticum was engineered for high ethanol yield, but we found that the strains switched from growth-coupled production of ethanol to growth uncoupled production of acetate and 1,2-propanediol upon growth cessation, producing up to 6.7 g/L 1,2-propanediol from 60 g/L cellobiose.
View Article and Find Full Text PDFImperial County is in southern California, one of the state's two counties at the international United States-Mexico border. The county is one of the most resource-limited in the state, with only two hospitals serving its 180,000 citizens, and no tertiary care centers. A significant portion of the population cared for at the local hospitals commutes from Mexicali, a large city of 1.
View Article and Find Full Text PDFCell and gene therapies have achieved impressive results in the treatment of rare genetic diseases using gene corrected stem cells and haematological cancers using chimeric antigen receptor T cells. However, these two fields face significant challenges such as demonstrating long-term efficacy and safety, and achieving cost-effective, scalable manufacturing processes. The use of small molecules is a key approach to overcome these barriers and can benefit cell and gene therapies at multiple stages of their lifecycle.
View Article and Find Full Text PDFBackground: The cellulolytic thermophile Clostridium thermocellum is an important biocatalyst due to its ability to solubilize lignocellulosic feedstocks without the need for pretreatment or exogenous enzyme addition. At low concentrations of substrate, C. thermocellum can solubilize corn fiber > 95% in 5 days, but solubilization declines markedly at substrate concentrations higher than 20 g/L.
View Article and Find Full Text PDFThe fiber in corn kernels, currently unutilized in the corn to ethanol process, represents an opportunity for introduction of cellulose conversion technology. We report here that Clostridium thermocellum can solubilize over 90% of the carbohydrate in autoclaved corn fiber, including its hemicellulose component glucuronoarabinoxylan (GAX). However, Thermoanaerobacterium thermosaccharolyticum or several other described hemicellulose-fermenting thermophilic bacteria can only partially utilize this GAX.
View Article and Find Full Text PDFInternational health team volunteers frequently arrive at service sites with considerable lack of confidence and knowledge gaps because of poor preparation. Preservice orientation has been shown to improve knowledge, confidence, and competence, but current practices fall short of meeting most needs. This health care improvement project was aimed to improve self-confidence and cultural and global health competence using a virtual preservice orientation format.
View Article and Find Full Text PDFBackground: The thermophilic, anaerobic bacterium Thermoanaerobacterium saccharolyticum digests hemicellulose and utilizes the major sugars present in biomass. It was previously engineered to produce ethanol at yields equivalent to yeast. While saccharolytic anaerobes have been long studied as potential biomass-fermenting organisms, development efforts for commercial ethanol production have not been reported.
View Article and Find Full Text PDFClostridium thermocellum is an anaerobic thermophile with the ability to digest lignocellulosic biomass that has not been pretreated with high temperatures. Thermophilic anaerobes have previously been shown to more readily degrade grasses than wood. Part of the explanation for this may be the presence of relatively large amounts of coumaric acid in grasses, with linkages to both hemicellulose and lignin.
View Article and Find Full Text PDFBackground: Thermoanaerobacterium saccharolyticum is a hemicellulose-degrading thermophilic anaerobe that was previously engineered to produce ethanol at high yield. A major project was undertaken to develop this organism into an industrial biocatalyst, but the lack of genome information and resources were recognized early on as a key limitation.
Results: Here we present a set of genome-scale resources to enable the systems level investigation and development of this potentially important industrial organism.
Appl Microbiol Biotechnol
September 2015
Clostridium thermocellum can rapidly solubilize cellulose and produces ethanol as an end product of its metabolism. As such, it is a candidate for bioethanol production from plant matter. In this study, we developed an inducible expression system for C.
View Article and Find Full Text PDFBackground: The liberation of acetate from hemicellulose negatively impacts fermentations of cellulosic biomass, limiting the concentrations of substrate that can be effectively processed. Solvent-producing bacteria have the capacity to convert acetate to the less toxic product acetone, but to the best of our knowledge, this trait has not been transferred to an organism that produces ethanol at high yield.
Results: We have engineered a five-step metabolic pathway to convert acetic acid to acetone in the thermophilic anaerobe Thermoanaerobacterium saccharolyticum.
Background: Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome.
View Article and Find Full Text PDFIn Clostridium thermocellum, a thermophilic anaerobic bacterium able to rapidly ferment cellulose to ethanol, pyruvate kinase (EC 2.7.1.
View Article and Find Full Text PDFBackground: The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.
Results: We report the initial characterization of the carbon catabolite repression system in this organism.
Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54 g/L ethanol, one of the highest titers reported for Thermoanaerobacterium.
View Article and Find Full Text PDFBackground: A previously developed mathematical model of low solids thermophilic simultaneous saccharification and fermentation (tSSF) with Avicel was unable to predict performance at high solids using a commercial cellulase preparation (Spezyme CP) and the high ethanol yield Thermoanaerobacterium saccharolyticum strain ALK2. The observed hydrolysis proceeded more slowly than predicted at solids concentrations greater than 50 g/L Avicel. Factors responsible for this inaccuracy were investigated in this study.
View Article and Find Full Text PDFMarker removal strategies were developed for Thermoanaerobacterium saccharolyticum to select against the pyrF gene and the pta and ack genes. The pta- and ack-based haloacetate selective strategy was subsequently used to create strain M0355, a markerless Δldh Δpta Δack strain that produces ethanol at a high yield.
View Article and Find Full Text PDFObjective: Large numbers of drugs are prescribed antenatally, many of which are off-label or unlicensed. An off-label medication is one which does have a market authorization, but for a different indication, dose, route or patient group than that for which it is prescribed. The purpose of this study was to determine how commonly these prescriptions are written at Liverpool Women's Hospital (LWH), a unit with 8000 deliveries per annum.
View Article and Find Full Text PDFA method is described for generating conditional lethal mutations in essential genes in Escherichia coli. In this procedure, amber stop codons are introduced as "tagalong" mutations in the flanking DNA of a downstream antibiotic-resistance marker by lambda Red recombination. The marker is removed by expression of I-SceI homing endonuclease, leaving a markerless mutation.
View Article and Find Full Text PDFBackground: With the development of new technology, it has recently become practical to resequence the genome of a bacterium after experimental manipulation. It is critical though to know the accuracy of the technique used, and to establish confidence that all of the mutations were detected.
Results: In order to evaluate the accuracy of genome resequencing using the microarray-based Comparative Genome Sequencing service provided by Nimblegen Systems Inc.
Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were verified experimentally in five cases, leading to the functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT, and putP) with two new enzymatic activities and four transport functions.
View Article and Find Full Text PDFWe applied whole-genome resequencing of Escherichia coli to monitor the acquisition and fixation of mutations that conveyed a selective growth advantage during adaptation to a glycerol-based growth medium. We identified 13 different de novo mutations in five different E. coli strains and monitored their fixation over a 44-d period of adaptation.
View Article and Find Full Text PDF