Publications by authors named "Christopher Hastings"

Porous organic cages (POCs) and metal-organic polyhedra (MOPs) function as zero-dimensional porous materials, able to mimic many functions of insoluble framework materials while offering processability advantages. A popular approach to access tailored metal-based motifs in extended network materials is postsynthetic metalation, which allows metal installation to be decoupled from framework assembly. Surprisingly, this approach has only sparingly been reported for molecular porous materials.

View Article and Find Full Text PDF

PGC-1α plays a central role in maintaining mitochondrial and energy metabolism homeostasis, linking external stimuli to transcriptional co-activation of genes involved in adaptive and age-related pathways. The carboxyl-terminus encodes a serine/arginine-rich (RS) region and an RNA recognition motif, however the RNA-processing function(s) were poorly investigated over the past 20 years. Here, we show that the RS domain of human PGC-1α directly interacts with RNA and the nuclear RNA export receptor NXF1.

View Article and Find Full Text PDF

Both natural enzymatic systems and synthetic porous material catalysts utilize well-defined and uniform channels to dictate reaction selectivities on the basis of size or shape. Mimicry of this design element in homogeneous systems is generally difficult owing to the flexibility inherent in most small molecular species. Herein, we report the synthesis of a tripodal ligand scaffold that orients a narrow and rigid cavity atop accessible metal coordination space.

View Article and Find Full Text PDF

Parkinson's Disease is the most common neurodegenerative movement disorder globally, with prevalence increasing. There is an urgent need for new therapeutics which are disease-modifying rather than symptomatic. Mitochondrial dysfunction is a well-documented mechanism in both sporadic and familial Parkinson's Disease.

View Article and Find Full Text PDF

Mitochondrial abnormalities have been identified as a central mechanism in multiple neurodegenerative diseases and, therefore, the mitochondria have been explored as a therapeutic target. This review will focus on the evidence for mitochondrial abnormalities in the two most common neurodegenerative diseases, Parkinson's disease and Alzheimer's disease. In addition, we discuss the main strategies which have been explored in these diseases to target the mitochondria for therapeutic purposes, focusing on mitochondrially targeted antioxidants, peptides, modulators of mitochondrial dynamics and phenotypic screening outcomes.

View Article and Find Full Text PDF