Protein advanced glycation end products (AGEs) can be formed via nonenzymatic glycation and accumulated intracellularly to disrupt cellular homeostasis for protein clearance. Here, we investigated the formation particulars of intracellular protein AGEs and sought to elucidate the molecular events implicated in the impact of cellular clearance systems. The formation and accumulation of intracellular protein AGEs increased protein aggregation and protease resistance, potentially overwhelming the ubiquitin-proteasome system (UPS).
View Article and Find Full Text PDF