Publications by authors named "Christopher Hampton"

Age related macular degeneration and other retinal degenerative disorders are characterized by disruption of the outer blood retinal barrier (oBRB) with subsequent ischemia, neovascularization, and atrophy. Despite the treatment advances, there remains no curative therapy, and no treatment targeted at regenerating native-like tissue for patients with late stages of the disease. Here we present advances in tissue engineering, focusing on bioprinting methods of generating tissue allowing for safe and reliable production of oBRB as well as tissue reprogramming with induced pluripotent stem cells for transplantation.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD), a leading cause of blindness, initiates in the outer-blood-retina-barrier (oBRB) formed by the retinal pigment epithelium (RPE), Bruch's membrane, and choriocapillaris. The mechanisms of AMD initiation and progression remain poorly understood owing to the lack of physiologically relevant human oBRB models. To this end, we engineered a native-like three-dimensional (3D) oBRB tissue (3D-oBRB) by bioprinting endothelial cells, pericytes, and fibroblasts on the basal side of a biodegradable scaffold and establishing an RPE monolayer on top.

View Article and Find Full Text PDF

The type III intermediate filament (IF) proteins vimentin and desmin are sequentially overexpressed in stromal myofibroblasts over the period when fibrosis sets in after corneal injury. Prior findings have revealed vimentin-deficient mice are significantly protected from corneal fibrosis after alkali injury, which has implicated this IF protein as an important regulator of corneal fibrosis. It has remained as yet unproven whether desmin contributes in any significant manner to corneal fibrosis.

View Article and Find Full Text PDF

Many forms of blindness result from the dysfunction or loss of retinal photoreceptors. Induced pluripotent stem cells (iPSCs) hold great potential for the modelling of these diseases or as potential therapeutic agents. However, to fulfill this promise, a remaining challenge is to induce human iPSC to recreate in vitro key structural and functional features of the native retina, in particular the presence of photoreceptors with outer-segment discs and light sensitivity.

View Article and Find Full Text PDF