Publications by authors named "Christopher H K Chen"

The dissipation of turbulence in astrophysical systems is fundamental to energy transfer and heating in environments ranging from the solar wind and corona to accretion disks and the intracluster medium. Although turbulent dissipation is relatively well understood in fluid dynamics, astrophysical plasmas often exhibit exotic behaviour, arising from the lack of interparticle collisions, which complicates turbulent dissipation and heating in these systems. Recent observations by NASA's Parker Solar Probe mission in the inner heliosphere have shed new light on the role of ion cyclotron resonance as a potential candidate for turbulent dissipation and plasma heating.

View Article and Find Full Text PDF
Article Synopsis
  • The study of electron scales is crucial for understanding plasma behavior in space and astrophysics, specifically in terms of plasma turbulence and energy transfer.
  • There is a significant gap in knowledge regarding how plasma electrons contribute to heat flux and its regulation, making it a key area of research.
  • This White Paper outlines important scientific questions related to electron processes and proposes new space missions to address these challenges in the fields of space physics and astrophysics.
View Article and Find Full Text PDF

We perform a statistical study of the turbulent power spectrum at inertial and kinetic scales observed during the first perihelion encounter of the Parker Solar Probe. We find that often there is an extremely steep scaling range of the power spectrum just above the ion-kinetic scales, similar to prior observations at 1 A.U.

View Article and Find Full Text PDF