Publications by authors named "Christopher Gu"

Background: The gut microbiome is believed to contribute to bloodstream infection (BSI) via translocation of dominant gut bacteria in vulnerable patient populations. However, conclusively linking gut and blood organisms requires stringent approaches to establish strain-level identity.

Methods: We enrolled a convenience cohort of critically ill patients and investigated 86 bloodstream infection episodes that occurred in 57 patients.

View Article and Find Full Text PDF

is an enteric bacterial pathogen that can a cause nosocomial infection leading to debilitating colitis. The development of a murine model of infection has led to fundamental discoveries in disease pathogenesis and the host immune response to infection. Recently, endogenously present in the microbiota of mice has been reported and was found to complicate interpretation of mouse studies.

View Article and Find Full Text PDF

Mycobacterium chelonae is a rapidly growing nontuberculous mycobacterium that is a common cause of nosocomial infections. Here we describe investigation of a possible nosocomial transmission of M. chelonae at the Hospital of the University of Pennsylvania (HUP).

View Article and Find Full Text PDF

Children with inflammatory bowel diseases (IBD) are particularly vulnerable to infection with Clostridioides difficile (CDI). IBD and IBD + CDI have overlapping symptoms but respond to distinctive treatments, highlighting the need for diagnostic biomarkers. Here, we studied pediatric patients with IBD and IBD + CDI, comparing longitudinal data on the gut microbiome, metabolome, and other measures.

View Article and Find Full Text PDF

Many HIV strains downregulate the levels of CD4 receptor on the surface of infected cells to prevent superinfection. In contrast, the rare HIV-2 strain is noncytopathic and has no effect on CD4 expression in infected cells but still replicates as efficiently as more cytopathic strains in peripheral blood mononuclear cells (PBMCs). Here, we show that HIV-2 Env interactions with the CD4 receptor exhibit slow association kinetics, whereas the dissociation kinetics is within the range of cytopathic strains.

View Article and Find Full Text PDF

Objectives: Death certificate data indicate that the age-adjusted death rate for pneumonia and influenza is higher in New York City than in the United States. Most pneumonia and influenza deaths are attributed to pneumonia rather than influenza. Because most pneumonia deaths occur in hospitals, we analyzed hospital discharge data to provide insight into the burden of pneumonia in New York City.

View Article and Find Full Text PDF

The original version of this Article contained an error in the spelling of the author Amos B. Smith, III, which was incorrectly given as Amos B. SmithIII.

View Article and Find Full Text PDF

The entry of HIV-1 into target cells is mediated by the viral envelope glycoproteins (Env). Binding to the CD4 receptor triggers a cascade of conformational changes in distant domains that move Env from a functionally "closed" State 1 to more "open" conformations, but the molecular mechanisms underlying allosteric regulation of these transitions are still elusive. Here, we develop chemical probes that block CD4-induced conformational changes in Env and use them to identify a potential control switch for Env structural rearrangements.

View Article and Find Full Text PDF

Background: The human immunodeficiency virus (HIV-1) envelope glycoprotein (Env), a Type 1 transmembrane protein, assembles into a trimeric spike complex that mediates virus entry into host cells. The high potential energy of the metastable, unliganded Env trimer is maintained by multiple non-covalent contacts among the gp120 exterior and gp41 transmembrane Env subunits. Structural studies suggest that the gp41 transmembrane region forms a left-handed coiled coil that contributes to the Env trimer interprotomer contacts.

View Article and Find Full Text PDF

Interactions between the gp120 and gp41 subunits of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer maintain the metastable unliganded form of the viral spike. Binding of gp120 to the receptor, CD4, changes the Env conformation to promote gp120 interaction with the second receptor, CCR5 or CXCR4. CD4 binding also induces the transformation of Env into the prehairpin intermediate, in which the gp41 heptad repeat 1 (HR1) coiled coil is assembled at the trimer axis.

View Article and Find Full Text PDF

Unlabelled: Primary human immunodeficiency virus (HIV-1) envelope glycoprotein (Env) trimers [(gp120/gp41)] typically exist in a metastable closed conformation (state 1). Binding the CD4 receptor triggers Env to undergo extensive conformational changes to mediate virus entry. We identified specific gp120 residues that restrain Env in state 1.

View Article and Find Full Text PDF

Unlabelled: The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, which consists of the gp120 and gp41 subunits, is the focus of multiple strategies for vaccine development. Extensive Env glycosylation provides HIV-1 with protection from the immune system, yet the glycans are also essential components of binding epitopes for numerous broadly neutralizing antibodies. Recent studies have shown that when Env is isolated from virions, its glycosylation profile differs significantly from that of soluble forms of Env (gp120 or gp140) predominantly used in vaccine discovery research.

View Article and Find Full Text PDF

Binding to the primary receptor, CD4, triggers conformational changes in the metastable HIV-1 envelope glycoprotein (Env) trimer ((gp120-gp41)3) that are important for virus entry into host cells. These changes include an 'opening' of the trimer, creation of a binding site for the CCR5 co-receptor and formation and/or exposure of a gp41 coiled coil. Here we identify a new compound, 18A (1), that specifically inhibits the entry of a wide range of HIV-1 isolates.

View Article and Find Full Text PDF

Unlabelled: Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) strains differ in their capacity to replicate in macrophages, but mechanisms underlying these differences are not fully understood. Here, we identify a highly conserved N-linked glycosylation site (N173 in SIV, corresponding to N160 in HIV) in the V2 region of the SIV envelope glycoprotein (Env) as a novel determinant of macrophage tropism and characterize mechanisms underlying this phenotype. Loss of the N173 glycosylation site in the non-macrophage-tropic SIVmac239 by introducing an N173Q mutation enhanced viral replication and multinucleated giant cell formation upon infection of rhesus macrophages, while the addition of N173 to SIVmac251 had the opposite effect.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) trimer, a membrane-fusing machine, mediates virus entry into host cells and is the sole virus-specific target for neutralizing antibodies. Binding the receptors, CD4 and CCR5/CXCR4, triggers Env conformational changes from the metastable unliganded state to the fusion-active state. We used cryo-electron microscopy to obtain a 6-Å structure of the membrane-bound, heavily glycosylated HIV-1 Env trimer in its uncleaved and unliganded state.

View Article and Find Full Text PDF

The trimeric envelope glycoprotein (Env) of human immunodeficiency virus type 1 (HIV-1) mediates virus entry into host cells. CD4 engagement with the gp120 exterior envelope glycoprotein subunit represents the first step during HIV-1 entry. CD4-induced conformational changes in the gp120 inner domain involve three potentially flexible topological layers (layers 1, 2, and 3).

View Article and Find Full Text PDF

The trimeric human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) spike is a molecular machine that mediates virus entry into host cells and is the sole target for virus-neutralizing antibodies. The mature Env spike results from cleavage of a trimeric glycoprotein precursor, gp160, into three gp120 and three gp41 subunits. Here, we describe an ~11-Å cryo-EM structure of the trimeric HIV-1 Env precursor in its unliganded state.

View Article and Find Full Text PDF