The clinical use of genomic analysis has expanded rapidly resulting in an increased availability and utility of genomic information in clinical care. We have developed an infrastructure utilizing informatics tools and clinical processes to facilitate the use of whole genome sequencing data for population health management across the healthcare system. Our resulting framework scaled well to multiple clinical domains in both pediatric and adult care, although there were domain specific challenges that arose.
View Article and Find Full Text PDFPurpose: To accurately ascertain the frequency of pathogenic germline variants (PGVs) in a pan-cancer patient population with universal genetic testing and to assess the economic impact of receiving genetic testing on healthcare costs.
Methods: In this prospective study, germline genetic testing using a 105-gene panel was administered to an unselected pan-cancer patient population irrespective of eligibility by current guidelines. Financial records of subjects were analyzed to assess the effect of PGV detection on cost of care one year from the date of testing.
Identification of pathogenic germline mutations by next generation sequencing is a widely accepted tool for predicting the risk of hereditary cancer development. Blood is the most common source of DNA for such tests. However, blood as a sample type has many drawbacks, including the invasive collection method, poor sample stability, and a relatively high cost of collection.
View Article and Find Full Text PDFAccurate segregation of homologous chromosomes during meiosis depends on their ability to remain physically connected throughout prophase I. For homologs that achieve a crossover, sister chromatid cohesion distal to the chiasma keeps them attached until anaphase I. However, in Drosophila melanogaster wild-type oocytes, chromosome 4 never recombines, and the X chromosome fails to cross over in 6-10% of oocytes.
View Article and Find Full Text PDF