Publications by authors named "Christopher Gasho"

Cerebral blood flow (CBF) increases during hypoxia to counteract the reduction in arterial oxygen content. The onset of tissue hypoxemia coincides with the stabilization of hypoxia-inducible factor (HIF) and transcription of downstream HIF-mediated processes. It has yet to be determined, whether HIF down- or upregulation can modulate hypoxic vasodilation of the cerebral vasculature.

View Article and Find Full Text PDF

Sympathetic transduction is reduced following chronic high-altitude (HA) exposure; however, vascular α-adrenergic signaling, the primary mechanism mediating sympathetic vasoconstriction at sea level (SL), has not been examined at HA. In nine male lowlanders, we measured forearm blood flow (Doppler ultrasound) and calculated changes in vascular conductance (ΔFVC) during ) incremental intra-arterial infusion of phenylephrine to assess α-adrenergic receptor responsiveness and ) combined intra-arterial infusion of β-adrenergic and α-adrenergic antagonists propranolol and phentolamine (α-β-blockade) to assess adrenergic vascular restraint at rest and during exercise-induced sympathoexcitation (cycling; 60% peak power). Experiments were performed near SL (344 m) and after 3 wk at HA (4,383 m).

View Article and Find Full Text PDF
Article Synopsis
  • High-altitude (HA) hypoxia can impact the neurovascular unit (NVU), a critical component for brain health, and this study investigates the effects on lowlanders vs. lifelong highlanders.
  • After 14 days at 4300 m, lowlanders showed signs of cognitive impairment and axonal injury, while highlanders demonstrated preserved cognitive function, better cerebral blood flow, and lower markers of neuronal damage.
  • The research suggests that highlanders have developed neuroprotective adaptations that help them cope with the chronic stress of HA hypoxia, highlighting their resilience compared to lowlanders.
View Article and Find Full Text PDF

New Findings: What is the central question of this study? How does hypoxic pulmonary vasoconstriction and the response to supplemental oxygen change over time at high altitude? What is the main finding and its importance? Lowlanders and partially de-acclimatized Sherpa both demonstrated pulmonary vascular responsiveness to supplemental oxygen that was maintained for 12 days' exposure to progressively increasing altitude. An additional 2 weeks' acclimatization at 5050 m altitude rendered the pulmonary vasculature minimally responsive to oxygen similar to the fully acclimatized non-ascent Sherpa. Additional hypoxic exposure at that time point did not augment hypoxic pulmonary vasoconstriction.

View Article and Find Full Text PDF

Chronic exposure to hypoxia (high-altitude, HA; >4000 m) attenuates the vasodilatory response to exercise and is associated with a persistent increase in basal sympathetic nerve activity (SNA). The mechanism(s) responsible for the reduced vasodilatation and exercise hyperaemia at HA remains unknown. We hypothesized that heightened adrenergic signalling restrains skeletal muscle blood flow during handgrip exercise in lowlanders acclimatizing to HA.

View Article and Find Full Text PDF

Objectives: During apnea diving, a patent foramen ovale may function as a pressure relief valve under conditions of high pulmonary pressure, preserving left-ventricular output. Patent foramen ovale prevalence in apneic divers has not been previously reported. We aimed to determine the prevalence of patent foramen ovale in apneic divers compared to non-divers.

View Article and Find Full Text PDF

Andeans with chronic mountain sickness (CMS) and polycythemia have similar maximal oxygen uptakes to healthy Andeans. Therefore, this study aimed to explore potential adaptations in convective oxygen transport, with a specific focus on sympathetically mediated vasoconstriction of nonactive skeletal muscle. In Andeans with (CMS, = 7) and without (CMS, = 9) CMS, we measured components of convective oxygen delivery, hemodynamic (arterial blood pressure via intra-arterial catheter), and autonomic responses [muscle sympathetic nerve activity (MSNA)] at rest and during steady-state submaximal cycling exercise [30% and 60% peak power output (PPO) for 5 min each].

View Article and Find Full Text PDF

High-altitude exposure results in a hyperventilatory-induced respiratory alkalosis followed by renal compensation (bicarbonaturia) to return arterial blood pH (pHa) toward sea-level values. However, acid-base balance has not been comprehensively examined in both lowlanders and indigenous populations-where the latter are thought to be fully adapted to high altitude. The purpose of this investigation was to compare acid-base balance between acclimatizing lowlanders and Andean and Sherpa highlanders at various altitudes (∼3,800, ∼4,300, and ∼5,000 m).

View Article and Find Full Text PDF

Background: Increasing iron bioavailability attenuates hypoxic pulmonary vasoconstriction in both lowlanders and Sherpas at high altitude. In contrast, the pulmonary vasculature of Andean individuals with chronic mountain sickness (CMS) is resistant to iron administration. Although pulmonary vascular remodeling and hypertension are characteristic features of CMS, the effect of iron administration in healthy Andean individuals, to our knowledge, has not been investigated.

View Article and Find Full Text PDF

Hemoconcentration can influence hypoxic pulmonary vasoconstriction (HPV) via increased frictional force and vasoactive signaling from erythrocytes, but whether the balance of these mechanism is modified by the duration of hypoxia remains to be determined. We performed three sequential studies: ) at sea level, in normoxia and isocapnic hypoxia with and without isovolumic hemodilution ( = 10, aged 29 ± 7 yr); ) at altitude (6 ± 2 days acclimatization at 5,050 m), before and during hypervolumic hemodilution ( = 11, aged 27 ± 5 yr) with room air and additional hypoxia [fraction of inspired oxygen ([Formula: see text])= 0.15]; and ) at altitude (4,340 m) in Andean high-altitude natives with excessive erythrocytosis (EE; = 6, aged 39 ± 17 yr), before and during isovolumic hemodilution with room air and hyperoxia (end-tidal Po = 100 mmHg).

View Article and Find Full Text PDF

The high-altitude maladaptation syndrome known as chronic mountain sickness (CMS) is characterized by polycythemia and is associated with proteinuria despite unaltered glomerular filtration rate. However, it remains unclear if indigenous highlanders with CMS have altered volume regulatory hormones. We assessed NH-terminal pro-B-type natriuretic peptide (NT pro-BNP), plasma aldosterone concentration, plasma renin activity, kidney function (urinary microalbumin, glomerular filtration rate), blood volume, and estimated pulmonary artery systolic pressure (ePASP) in Andean males without ( = 14; age = 39 ± 11 yr) and with ( = 10; age = 40 ± 12 yr) CMS at 4,330 m (Cerro de Pasco, Peru).

View Article and Find Full Text PDF

Key Points: Humans suffering from polycythaemia undergo multiple circulatory adaptations including changes in blood rheology and structural and functional vascular adaptations to maintain normal blood pressure and vascular shear stresses, despite high blood viscosity. During exercise, several circulatory adaptations are observed, especially involving adrenergic and non-adrenergic mechanisms within non-active and active skeletal muscle to maintain exercise capacity, which is not observed in animal models. Despite profound circulatory stress, i.

View Article and Find Full Text PDF

In this case study, we evaluate the unique physiological profiles of two world-champion breath-hold divers. At close to current world-record depths, the extreme physiological responses to both exercise and asphyxia during progressive elevations in hydrostatic pressure are profound. As such, these professional athletes must be capable of managing such stress, to maintain performing at the forefront human capacity.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? How does deep breath-hold diving impact cardiopulmonary function, both acutely and over the subsequent 2.5 hours post-dive? What is the main finding and its importance? Breath-hold diving, to depths below residual volume, is associated with acute impairments in pulmonary gas exchange, which typically resolve within 2.5 hours.

View Article and Find Full Text PDF

Key Points: Iron acts as a cofactor in the stabilization of the hypoxic-inducible factor family, and plays an influential role in the modulation of hypoxic pulmonary vasoconstriction. It is uncertain whether iron regulation is altered in lowlanders during either (1) ascent to high altitude, or (2) following partial acclimatization, when compared to high-altitude adapted Sherpa. During ascent to 5050 m, the rise in pulmonary artery systolic pressure (PASP) was blunted in Sherpa, compared to lowlanders; however, upon arrival to 5050 m, PASP levels were comparable in both groups, but the reduction in iron bioavailability was more prevalent in lowlanders compared to Sherpa.

View Article and Find Full Text PDF

Early acclimatization to high altitude is characterized by various respiratory, hematological, and cardiovascular adaptations that serve to restore oxygen delivery to tissue. However, less is understood about renal function and the role of renal oxygen delivery (RDO) during high altitude acclimatization. We hypothesized that ) RDO would be reduced after 12 h of high altitude exposure (high altitude ) but restored to sea level values after 1 wk (high altitude ) and ) RDO would be associated with renal reactivity, an index of acid-base compensation at high altitude.

View Article and Find Full Text PDF

Sympathetic vasoconstriction is mediated by α-adrenergic receptors under resting conditions. During exercise, increased sympathetic nerve activity (SNA) is directed to inactive and active skeletal muscle; however, it is unclear what mechanism(s) are responsible for vasoconstriction during large muscle mass exercise in humans. The aim of this study was to determine the contribution of α-adrenergic receptors to sympathetic restraint of inactive skeletal muscle and active skeletal muscle during cycle exercise in healthy humans.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Does chronic mountain sickness (CMS) alter sympathetic neural control and arterial baroreflex regulation of blood pressure in Andean (Quechua) highlanders? What is the main finding and its importance? Compared to healthy Andean highlanders, basal sympathetic vasomotor outflow is lower, baroreflex control of muscle sympathetic nerve activity is similar, supine heart rate is lower and cardiovagal baroreflex gain is greater in mild CMS. Taken together, these findings reflect flexibility in integrative regulation of blood pressure that may be important when blood viscosity and blood volume are elevated in CMS.

Abstract: The high-altitude maladaptation syndrome chronic mountain sickness (CMS) is characterized by excessive erythrocytosis and frequently accompanied by accentuated arterial hypoxaemia.

View Article and Find Full Text PDF

Rationale: Chronic exposure to hypoxia is associated with elevated sympathetic nervous activity and reduced vascular function in lowlanders, and Andean highlanders suffering from excessive erythrocytosis (EE); however, the mechanistic link between chronically elevated sympathetic nervous activity and hypoxia-induced vascular dysfunction has not been determined.

Objective: To determine the impact of heightened sympathetic nervous activity on resistance artery endothelial-dependent dilation (EDD), and endothelial-independent dilation, in lowlanders and Andean highlanders with and without EE.

Methods And Results: We tested healthy lowlanders (n=9) at sea level (344 m) and following 14 to 21 days at high altitude (4300 m), and permanent Andean highlanders with (n=6) and without (n=9) EE at high altitude.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Herein, a methodological overview of our research team's (Global REACH) latest high altitude research expedition to Peru is provided. What is the main finding and its importance? The experimental objectives, expedition organization, measurements and key cohort data are discussed. The select data presented in this manuscript demonstrate the haematological differences between lowlanders and Andeans with and without excessive erythrocytosis.

View Article and Find Full Text PDF
Article Synopsis
  • Independent stimulation of pulmonary artery baroreceptors in anesthetized animals triggers an increase in sympathetic nerve activity, but a direct causal relationship in humans had yet to be established.
  • A study with healthy lowlander participants at high altitude found that lowering pulmonary arterial pressure through nitric oxide inhalation led to a significant decrease in muscle sympathetic nerve activity (MSNA), suggesting that pulmonary baroreceptors play a role in sympathetic activation.
  • The findings highlight that the mechanism distinguishing pulmonary arterial influence on MSNA differs from the feedback reflex typically observed with other baroreceptors when systemic arterial pressure is reduced.
View Article and Find Full Text PDF

In contrast to Andean natives, high-altitude Tibetans present with a lower hemoglobin concentration that correlates with reproductive success and exercise capacity. Decades of physiological and genomic research have assumed that the lower hemoglobin concentration in Himalayan natives results from a blunted erythropoietic response to hypoxia (i.e.

View Article and Find Full Text PDF

Objectives: Lung ultrasound (LUS) plays an increasing role in diagnosis and monitoring of interstitial lung disease (ILD). Connective tissue disorders (CTD) frequently cause ILD, and often presents symptomatically after irreversible fibrosis has ensued. As point-of-care musculoskeletal ultrasound (US) is commonly utilised by rheumatologists, translating this US expertise towards LUS places the rheumatologist in a position to screen for ILD.

View Article and Find Full Text PDF

The study of conduit artery endothelial adaptation to hypoxia has been restricted to the brachial artery, and comparisons with highlanders have been confounded by differences in altitude exposure, exercise, and unknown levels of blood viscosity. To address these gaps, we tested the hypothesis that lowlanders, but not Sherpa, would demonstrate decreased mean shear stress and increased retrograde shear stress and subsequently reduced flow-mediated dilation (FMD) in the upper and lower limb conduit arteries on ascent to 5,050 m. Healthy lowlanders (means ± SD, n = 22, 28 ± 6 yr) and Sherpa ( n = 12, 34 ± 11 yr) ascended over 10 days, with measurements taken on nontrekking days at 1,400 m (baseline), 3,440 m ( day 4), 4,371 m ( day 7), and 5,050 m ( day 10).

View Article and Find Full Text PDF