Publications by authors named "Christopher G Twitty"

Clinical studies have demonstrated that local expression of the cytokine IL-12 drives interferon-gamma expression and recruits T cells to the tumor microenvironment, ultimately yielding durable systemic T cell responses. Interrogation of longitudinal biomarker data from our late-stage melanoma trials identified a significant on-treatment increase of intratumoral transcripts that was restricted to responding patients, underscoring the clinical relevance of tumor-infiltrating CXCR3 immune cells. In this study, we sought to understand if the addition of DNA-encodable CXCL9 could augment the anti-tumor immune responses driven by intratumoral IL-12.

View Article and Find Full Text PDF

Unlabelled: Intratumoral delivery of plasmid IL12 via electroporation (IT-tavo-EP) induces localized expression of IL12 leading to regression of treated and distant tumors with durable responses and minimal toxicity. A key driver in amplifying this local therapy into a systemic response is the magnitude and composition of immune infiltrate in the treated tumor. While intratumoral IL12 typically increases the density of CD3+ tumor-infiltrating lymphocytes (TIL), this infiltrate is composed of a broad range of T-cell subsets, including activated tumor-specific T cells, less functional bystander T cells, as well as suppressive T regulatory cells.

View Article and Find Full Text PDF

Purpose: Triple-negative breast cancer (TNBC) is an aggressive disease with limited therapeutic options. Antibodies targeting programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) have entered the therapeutic landscape in TNBC, but only a minority of patients benefit. A way to reliably enhance immunogenicity, T-cell infiltration, and predict responsiveness is critically needed.

View Article and Find Full Text PDF

Purpose: Tumors with low frequencies of checkpoint positive tumor-infiltrating lymphocytes (cpTIL) have a low likelihood of response to PD-1 blockade. We conducted a prospective multicenter phase II trial of intratumoral plasmid IL-12 (tavokinogene telseplasmid; "tavo") electroporation combined with pembrolizumab in patients with advanced melanoma with low frequencies of checkpoint positive cytotoxic lymphocytes (cpCTL).

Patients And Methods: Tavo was administered intratumorally days 1, 5, and 8 every 6 weeks while pembrolizumab (200 mg, i.

View Article and Find Full Text PDF

Purpose Of Review: Recent developments in immunotherapy have transformed the landscape of melanoma therapy. Here, we review markers for response to immunotherapy.

Recent Findings: Current immunotherapies disable immune checkpoints on T cells and other immune cells and allow immune rejection of tumor.

View Article and Find Full Text PDF

Whereas systemic IL12 is associated with potentially life-threatening toxicity, intratumoral delivery of IL12 through tavokinogene telseplasmid electroporation (tavo) is safe and can induce tumor regression at distant sites. The mechanism by which these responses are mediated is unknown but is presumed to result from a cellular immune response. In a phase II clinical trial of tavo (NCT01502293), samples from 29 patients with cutaneous melanoma with in-transit disease were assessed for immune responses induced with this treatment.

View Article and Find Full Text PDF

Purpose: IL12 promotes adaptive type I immunity and has demonstrated antitumor efficacy, but systemic administration leads to severe adverse events (AE), including death. This pilot trial investigated safety, efficacy, and immunologic activity of intratumoral delivery of IL12 plasmid DNA (tavo) via electroporation (i.t.

View Article and Find Full Text PDF

Anti-PD-1 immune checkpoint blockers can induce sustained clinical responses in cancer but how they function in vivo remains incompletely understood. Here, we combined intravital real-time imaging with single-cell RNA sequencing analysis and mouse models to uncover anti-PD-1 pharmacodynamics directly within tumors. We showed that effective antitumor responses required a subset of tumor-infiltrating dendritic cells (DCs), which produced interleukin 12 (IL-12).

View Article and Find Full Text PDF

Tumor cells express a number of immunosuppressive molecules that can suppress anti-tumor immune responses. Efficient delivery of small interfering RNAs to treat a wide range of diseases including cancers remains a challenge. Retroviral replicating vectors (RRV) can be used to stably and selectively introduce genetic material into cancer cells.

View Article and Find Full Text PDF

Therapeutic treatment of large established tumors using immunotherapy has yielded few promising results. We investigated whether adoptive transfer of tumor-specific CD8(+) T cells, together with tumor-specific CD4(+) T cells, would mediate regression of large established B16BL6-D5 melanomas in lymphopenic Rag1(-/-) recipients devoid of regulatory T cells. The combined adoptive transfer of subtherapeutic doses of both TRP1-specific TCR transgenic Rag1(-/-) CD4(+) T cells and gp100-specific TCR transgenic Rag1(-/-) CD8(+) T cells into lymphopenic recipients, who received vaccination, led to regression of large (100-400 mm(2)) melanomas.

View Article and Find Full Text PDF

Few immunotherapists would accept the concept of a single vaccination inducing a therapeutic anticancer immune response in a patient with advanced cancer. But what is the evidence to support the "more-is-better" approach of multiple vaccinations? Because we are unaware of trials comparing the effect of a single vaccine versus multiple vaccinations on patient outcome, we considered that an anticancer immune response might provide a surrogate measure of the effectiveness of vaccination strategies. Because few large trials include immunologic monitoring, the majority of information is gleaned from smaller trials in which an evaluation of immune responses to vaccine or tumor, before and at 1 or more times following the first vaccine, was performed.

View Article and Find Full Text PDF

Purpose: Tumor-specific antigens of 3-methylcholanthrene (MCA)-induced sarcomas were defined by the narrow immune responses they elicited, which uniquely rejected the homologous tumor, with no cross-reactions between independently derived syngeneic MCA-induced tumors. This study examines whether an autophagosome-enriched vaccine derived from bortezomib-treated sarcomas can elicit an immune response that cross-reacts with other unique sarcomas.

Experimental Design: Mice were vaccinated with either MCA-induced sarcomas or autophagosomes derived from those tumors and later challenged with either homologous or nonhomologous sarcomas.

View Article and Find Full Text PDF