Synthesis and implementation of highly active, stable, and affordable electrocatalysts for the oxygen evolution reaction (OER) is a major challenge in developing energy efficient and economically viable energy conversion devices such as electrolyzers, rechargeable metal-air batteries, and regenerative fuel cells. The current benchmark electrocatalyst for OER is based on iridium oxide (IrO) due to its superior performance and excellent stability. However, large scale applications using IrO are impractical due to its low abundance and high cost.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
Cryogenic electron microscopy (cryo-EM) has become one of the most powerful techniques to reveal the atomic structures and working mechanisms of biological macromolecules. New designs of the cryo-EM grids-aimed at preserving thin, uniform vitrified ice and improving protein adsorption-have been considered a promising approach to achieving higher resolution with the minimal amount of materials and data. Here, we describe a method for preparing graphene cryo-EM grids with up to 99% monolayer graphene coverage that allows for more than 70% grid squares for effective data acquisition with improved image quality and protein density.
View Article and Find Full Text PDFTwo dimensional (2D) materials-based plasmon-free surface-enhanced Raman scattering (SERS) is an emerging field in nondestructive analysis. However, impeded by the low density of state (DOS), an inferior detection sensitivity is frequently encountered due to the low enhancement factor of most 2D materials. Metallic transition-metal dichalcogenides (TMDs) could be ideal plasmon-free SERS substrates because of their abundant DOS near the Fermi level.
View Article and Find Full Text PDFDevelopment of earth-abundant electrocatalysts for hydrogen evolution and oxidation reactions in strong acids represents a great challenge for developing high efficiency, durable, and cost effective electrolyzers and fuel cells. We report herein that hafnium oxyhydroxide with incorporated nitrogen by treatment using an atmospheric nitrogen plasma demonstrates high catalytic activity and stability for both hydrogen evolution and oxidation reactions in strong acidic media using earth-abundant materials. The observed properties are especially important for unitized regenerative fuel cells using polymer electrolyte membranes.
View Article and Find Full Text PDF