Proc Natl Acad Sci U S A
January 2025
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in attackers shape resistance evolution in susceptible competitors.
View Article and Find Full Text PDFThe environmental use of azole fungicides has led to selective sweeps across multiple loci in the Aspergillus fumigatus genome causing the rapid global expansion of a genetically distinct cluster of resistant genotypes. Isolates within this cluster are also more likely to be resistant to agricultural antifungals with unrelated modes of action. Here we show that this cluster is not only multi-azole resistant but has increased propensity to develop resistance to next generation antifungals because of variants in the DNA mismatch repair system.
View Article and Find Full Text PDFIncreasing extreme climatic events threaten the functioning of terrestrial ecosystems. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils.
View Article and Find Full Text PDFMutagenesis is responsive to many environmental factors. Evolution therefore depends on the environment not only for selection but also in determining the variation available in a population. One such environmental dependency is the inverse relationship between mutation rates and population density in many microbial species.
View Article and Find Full Text PDFThe archaeon Sulfolobus acidocaldarius has emerged as a promising thermophilic model system. Investigating how thermophiles adapt to changing temperatures is a key requirement, not only for understanding fundamental evolutionary processes but also for developing S. acidocaldarius as a chassis for bioengineering.
View Article and Find Full Text PDFSpontaneous mutations are the ultimate source of novel genetic variation on which evolution operates. Although mutation rate is often discussed as a single parameter in evolution, it comprises multiple distinct types of changes at the level of DNA. Moreover, the rates of these distinct changes can be independently influenced by genomic background and environmental conditions.
View Article and Find Full Text PDFIntroduction: Peritoneal dialysis (PD)-related peritonitis (PDRP) is a common cause of transfer to hemodialysis, patient morbidity, and is a risk factor for mortality. Associated patient anxiety can deter selection of PD for renal replacement therapy. Diagnosis relies on hospital laboratory tests; however, this might be achieved earlier if such information was available at the point-of-care (POC), thereby significantly improving outcomes.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2023
Within-host environments are likely to present a challenging and stressful environment for opportunistic pathogenic bacteria colonizing from the external environment. How populations of pathogenic bacteria respond to such environmental challenges and how this varies between strains is not well understood. Oxidative stress is one of the defences adopted by the human immune system to confront invading bacteria.
View Article and Find Full Text PDFAntibiotic combination therapies are an approach used to counter the evolution of resistance; their purported benefit is they can stop the successive emergence of independent resistance mutations in the same genome. Here, we show that bacterial populations with 'mutators', organisms with defects in DNA repair, readily evolve resistance to combination antibiotic treatment when there is a delay in reaching inhibitory concentrations of antibiotic-under conditions where purely wild-type populations cannot. In populations of Escherichia coli subjected to combination treatment, we detected a diverse array of acquired mutations, including multiple alleles in the canonical targets of resistance for the two drugs, as well as mutations in multi-drug efflux pumps and genes involved in DNA replication and repair.
View Article and Find Full Text PDFAims: Long-term retention of impacted third molars (wisdom teeth) is associated with plaque stagnation and the development of caries on the adjacent surface of the neighboring second molar. While caries and tooth loss are common outcomes of impaction, there is currently insufficient evidence to support the pre-emptive removal of asymptomatic wisdom teeth. Emerging evidence suggests that convergently growing impactions are associated with caries.
View Article and Find Full Text PDFGenes encoding resistance to stressors, such as antibiotics or environmental pollutants, are widespread across microbiomes, often encoded on mobile genetic elements. Yet, despite their prevalence, the impact of resistance genes and their mobility upon the dynamics of microbial communities remains largely unknown. Here we develop eco-evolutionary theory to explore how resistance genes alter the stability of diverse microbiomes in response to stressors.
View Article and Find Full Text PDFOur understanding of the activity of cationic antimicrobial peptides (AMPs) has focused on well-characterized natural sequences, or limited sets of synthetic peptides designed de novo. We have undertaken a comprehensive investigation of the underlying primary structural features that give rise to the development of activity in AMPs. We consider a complete set of all possible peptides, up to 7 residues long, composed of positively charged arginine (R) and / or hydrophobic tryptophan (W), two features most commonly associated with activity.
View Article and Find Full Text PDFFindings from gut microbiome studies are strongly influenced by both experimental and analytical factors that can unintentionally bias their interpretation. Environment is also critical. Both co-housing and maternal effects are expected to affect microbiomes and have the potential to confound other manipulated factors, such as genetics.
View Article and Find Full Text PDFFront Cell Infect Microbiol
June 2021
The role of the human microbiome in health and disease is becoming increasingly apparent. Emerging evidence suggests that the microbiome is affected by solid organ transplantation. Kidney transplantation is the gold standard treatment for End-Stage Renal Disease (ESRD), the advanced stage of Chronic Kidney Disease (CKD).
View Article and Find Full Text PDFRoot-associated microbes can improve plant growth, and they offer the potential to increase crop resilience to future drought. Although our understanding of the complex feedbacks between plant and microbial responses to drought is advancing, most of our knowledge comes from non-crop plants in controlled experiments. We propose that future research efforts should attempt to quantify relationships between plant and microbial traits, explicitly focus on food crops, and include longer-term experiments under field conditions.
View Article and Find Full Text PDFEvolutionary inferences require reliable phylogenies. Morphological data have traditionally been analyzed using maximum parsimony, but recent simulation studies have suggested that Bayesian analyses yield more accurate trees. This debate is ongoing, in part, because of ambiguity over modes of morphological evolution and a lack of appropriate models.
View Article and Find Full Text PDFFluctuation assays are widely used for estimating mutation rates in microbes growing in liquid environments. Many cultures are each inoculated with a few thousand cells, each sensitive to a selective marker that can be assayed phenotypically. These parallel cultures grow for many generations in the absence of the phenotypic marker.
View Article and Find Full Text PDFThe gut has the largest commensal bacterial population in the body and its composition can be impacted by host factors such as production of immunoglobulin A (IgA). Eosinophils in the gut have been implicated in the production of antibacterial factors and maintenance of IgA-secreting plasma cells. We used an eosinophil-deficient mouse (∆dblGATA-1 ) and littermate controls to investigate the role of eosinophils in the regulation of the microbiota, with particular emphasis on mucus-resident species in the small and large intestine.
View Article and Find Full Text PDFEvolutionary rescue following environmental change requires mutations permitting population growth in the new environment. If change is severe enough to prevent most of the population reproducing, rescue becomes reliant on mutations already present. If change is sustained, the fitness effects in both environments, and how they are associated-termed 'environmental pleiotropy'-may determine which alleles are ultimately favoured.
View Article and Find Full Text PDFEvolution depends on mutations. For an individual genotype, the rate at which mutations arise is known to increase with various stressors (stress-induced mutagenesis-SIM) and decrease at high final population density (density-associated mutation-rate plasticity-DAMP). We hypothesised that these two forms of mutation-rate plasticity would have opposing effects across a nutrient gradient.
View Article and Find Full Text PDFThe emergence of high-throughput DNA sequencing methods provides unprecedented opportunities to further unravel bacterial biodiversity and its worldwide role from human health to ecosystem functioning. However, despite the abundance of sequencing studies, combining data from multiple individual studies to address macroecological questions of bacterial diversity remains methodically challenging and plagued with biases. Here, using a machine-learning approach that accounts for differences among studies and complex interactions among taxa, we merge 30 independent bacterial data sets comprising 1,998 soil samples from 21 countries.
View Article and Find Full Text PDFThe critical mutation rate (CMR) determines the shift between survival-of-the-fittest and survival of individuals with greater mutational robustness ("flattest"). We identify an inverse relationship between CMR and sequence length in an in silico system with a two-peak fitness landscape; CMR decreases to no more than five orders of magnitude above estimates of eukaryotic per base mutation rate. We confirm the CMR reduces exponentially at low population sizes, irrespective of peak radius and distance, and increases with the number of genetic crossovers.
View Article and Find Full Text PDFRates of random, spontaneous mutation can vary plastically, dependent upon the environment. Such plasticity affects evolutionary trajectories and may be adaptive. We recently identified an inverse plastic association between mutation rate and population density at 1 locus in 1 species of bacterium.
View Article and Find Full Text PDF