Purpose: Placental dysfunction plays a key role in diseases that affect the fetus in utero and after birth. Aiming to develop a platform for validating in vivo placental MRI and investigations into placental physiology, we designed and built a prototype MRI-compatible perfusion chamber with an integrated MRI receive coil for high SNR ex vivo placental imaging.
Principal Results: After optimizing placenta vascular clearing and perfusion protocols, we performed contrast enhanced MR angiography and MR relaxometry on eight carefully selected placentas while they were perfused via the umbilical arteries (UAs).
Permanent magnet arrays offer several attributes attractive for the development of a low-cost portable MRI scanner for brain imaging. They offer the potential for a relatively lightweight, low to mid-field system with no cryogenics, a small fringe field, and no electrical power requirements or heat dissipation needs. The cylindrical Halbach array, however, requires external shimming or mechanical adjustments to produce B fields with standard MRI homogeneity levels (e.
View Article and Find Full Text PDFThe neonatal brain is extremely vulnerable to injury during periods of hypoxia and/or ischemia. Risk of brain injury is increased during neonatal cardiac surgery, where pre-existing hemodynamic instability and metabolic abnormalities are combined with long periods of low cerebral blood flow and/or circulatory arrest. Our understanding of events associated with cerebral hypoxia-ischemia during cardiopulmonary bypass (CPB) remains limited, largely due to inadequate tools to quantify cerebral oxygen delivery and consumption non-invasively and in real-time.
View Article and Find Full Text PDF