Through mechanistic work and rational design, we have developed the fastest organometallic abiotic Cys bioconjugation. As a result, the developed organometallic Au(III) bioconjugation reagents enable selective labeling of Cys moieties down to picomolar concentrations and allow for the rapid construction of complex heterostructures from peptides, proteins, and oligonucleotides. This work showcases how organometallic chemistry can be interfaced with biomolecules and lead to a range of reactivities that are largely unmatched by classical organic chemistry tools.
View Article and Find Full Text PDFComplex stimuli responsive systems are the basis for molecular machines and computing. A dual psuedo-enantiomer system was conceived, where the combination of two 'switch-on' asymmetric catalytic cycles could be selectively triggered to afford an enantioenriched product. Two pseudo-enantiomeric proligands were designed and synthesised for selective activation by fluoride and alkaline phosphatase.
View Article and Find Full Text PDFSelective bioconjugation remains a significant challenge for the synthetic chemist due to the stringent reaction conditions required by biomolecules coupled with their high degree of functionality. The current trailblazer of transition-metal mediated bioconjugation chemistry involves the use of Pd(II) complexes prepared via an oxidative addition process. Herein, the preparation of Pd(II) complexes for cysteine bioconjugation via a facile C-H activation process is reported.
View Article and Find Full Text PDFElectrochemical biosensors are an increasingly attractive option for the development of a novel analyte detection method, especially when integration within a point-of-use device is the overall objective. In this context, accuracy and sensitivity are not compromised when working with opaque samples as the electrical readout signal can be directly read by a device without the need for any signal transduction. However, electrochemical detection can be susceptible to substantial signal drift and increased signal error.
View Article and Find Full Text PDFWe report the C4-selective C-H alkylation of carbazole derivatives furnished with a pyrimidine directing group at N9. This was realized using ruthenium catalyzed σ-activation methodology, whereby C-H activation at C1 enables the interaction of this ruthenacycle, at the para position to the metal center, with tertiary alkyl radicals.
View Article and Find Full Text PDFThe search for selective C-H functionalisation has enabled some of the most elegant techniques in modern catalysis. Herein, we review the rapidly expanding field of ruthenium catalysed σ-activation as a tool in the selective meta-C-H functionalisation of arenes.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2017
The para-selective C-H alkylation of aniline derivatives furnished with a pyrimidine auxiliary is herein reported. This reaction is proposed to take place via an N-H-activated cyclometalate formed in situ. Experimental and DFT mechanistic studies elucidate a dual role of the ruthenium catalyst.
View Article and Find Full Text PDFA novel ferrocene-based substrate for the ratiometric electrochemical detection of β-galactosidase was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for β-Gal detection with sensitivity as low as 0.1 U mL.
View Article and Find Full Text PDFA catalytic meta selective C-H alkylation of arenes is described using a wide range of α-halo carbonyls as coupling partners. Previously unreported primary alkylations with high meta selectivity have been enabled by this methodology whereas using straight chain alkyl halides affords ortho substituted products. Mechanistic analysis reveals an activation pathway whereby cyclometalation with a ruthenium(ii) complex activates the substrate molecule and is responsible for the meta selectivity observed.
View Article and Find Full Text PDFHydrogen peroxide (HO) detection is of high importance as it is a versatile (bio)marker whose detection can indicate the presence of explosives, enzyme activity and cell signalling pathways. Herein, we demonstrate the rapid and accurate ratiometric electrochemical detection of HO using disposable screen-printed electrodes through a reaction-based indicator assay. Ferrocene derivatives equipped with self-immolative linkers and boronic acid ester moieties were synthesised and tested, and, through a thorough assay optimisation, the optimum probe showed good stability, sensitivity and selectivity towards HO.
View Article and Find Full Text PDFRuthenium(II)-catalyzed C-H functionalization of N-arylhydantoins is herein described. The biologically relevant hydantoin (imidazolidinedione) heterocycle functions as a weakly coordinating directing group in a C-H alkenylation reaction. The reaction gave a wide scope of 23 examples with yields up to 94% in the green solvent 2-MeTHF.
View Article and Find Full Text PDFDiagnostic assays that rely on molecular interactions have come a long way; from initial reversible detection systems towards irreversible reaction indicator-based methods. More recently, the emergence of innovative molecular amplification methodologies has revolutionised sensing, allowing diagnostic assays to achieve ultra-low limits of detection. There have been a significant number of molecular amplification approaches developed over recent years to accommodate the wide variety of analytes that require sensitive detection.
View Article and Find Full Text PDFIllicit drug use has a global concern and effective monitoring and interventions are highly required to combat drug abuse. Wastewater-based epidemiology (WBE) is an innovative and cost-effective approach to evaluate community-wide drug use trends, compared to traditional population surveys. Here we report for the first time, a novel quantitative community sewage sensor (namely DNA-directed immobilization of aptamer sensors, DDIAS) for rapid and cost-effective estimation of cocaine use trends via WBE.
View Article and Find Full Text PDFSignal transduction and signal amplification are both important mechanisms used within biological signalling pathways. Inspired by this process, we have developed a signal amplification methodology that utilises the selectivity and high activity of enzymes in combination with the robustness and generality of an organometallic catalyst, achieving a hybrid biological and synthetic catalyst cascade. A proligand enzyme substrate was designed to selectively self-immolate in the presence of the enzyme to release a ligand that can bind to a metal pre-catalyst and accelerate the rate of a transfer hydrogenation reaction.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2015
A practical ruthenium-catalyzed O- to S-alkyl migration affords structurally diverse thiooxazolidinones in excellent yields. Our studies suggest this catalytic transformation proceeds through a pseudoreversible radical pathway drawing mechanistic parallels to the classic Barton-McCombie reaction.
View Article and Find Full Text PDFA catalytic meta-selective C-H functionalization of 2-phenylpyridines using a range of tertiary halides is described. The protocol is simple to perform and uses commercially available reagents to construct challenging quaternary carbon centres in a regioselective manner. Preliminary studies suggest the C-H functionalization proceeds through a radical process directed via a remote σ-activation.
View Article and Find Full Text PDFThe selective synthesis of 2,6-trans-tetrahydropyran derivatives employing the rhodium catalysed addition of organoboron reagents to dihydropyranone templates, derived from a zinc-catalysed hetero-Diels-Alder reaction, is reported. The addition of both arylboronic acids and potassium alkenyltrifluoroborates have been accomplished in high yields using commercially-available [Rh(cod)(OH)]2 catalyst. The selective formation of the 2,6-trans-tetrahydropyran stereoisomer is consistent with a mechanism involving alkene association and carbometalation on the less hindered face of the dihydropyranone.
View Article and Find Full Text PDFA new label-free electrochemical DNA (E-DNA) biosensor using a custom synthesized ferrocenyl (Fc) double-stranded DNA intercalator as a redox marker is presented. Single-stranded DNA (ssDNA) was co-immobilized on gold electrodes with 6-mecarpto-hexanol to control the surface density of the ssDNA probe, and hybridized with complementary DNA. The binding of the Fc intercalator to dsDNA was measured by differential pulse voltammetry.
View Article and Find Full Text PDFWe report on a novel strategy for DNA aptamer immobilization to develop sensitive electrochemical detection of a protein biomarker, with prostate specific antigen (PSA) as a case biomarker. Thiolated single-stranded DNA (ssDNA) was co-immobilized with 3-mercapto-1-propanol on gold electrodes, and used as a scaffold for DNA aptamer attachment through hybridization of the aptamer overhang (so-called "DNA-directed immobilization aptamer sensors", DDIAS). In the approach, the complementary DNA aptamer against PSA was assembled by the probe ssDNA onto the electrode to detect PSA; or the probe ssDNA directly hybridized with a complementary DNA aptamer/PSA complex following their pre-incubation in solution, so-called 'on-chip' and 'in-solution' methods, respectively.
View Article and Find Full Text PDFA novel ferrocene-derived substrate for the ratiometric electrochemical detection of alkaline phosphatase (ALP) was designed and synthesised. It was demonstrated to be an excellent electrochemical substrate for the ALP-labelled enzyme-linked immunosorbent assay (ELISA).
View Article and Find Full Text PDFAn efficient sequential intramolecular cyclization of amino alcohol carbamates followed by Cu-catalyzed cross-coupling with aryl iodides under mild conditions has been developed. The reaction occurred in good yields and tolerated aryl iodides containing functionalities such as nitriles, ketones, ethers, and halogens. Heteroaryl iodides and substituted amino alcohol carbamates were also well tolerated.
View Article and Find Full Text PDFThe synthesis of a range of novel silyl-protected dioxaborinanes as a column- and bench-stable boron reagent were found to be advantageous to achieving good yields in palladium-catalysed cross-coupling reactions under standard conditions.
View Article and Find Full Text PDFA ruthenium-catalyzed C-H acylation of arylpyrazoles with a variety of acyl chlorides is described. The acylation reaction exhibits good regioselectivity and both aromatic and aliphatic acyl chlorides can be effectively coupled to the arylpyrazoles at the ortho-position.
View Article and Find Full Text PDF