Publications by authors named "Christopher G Bazewicz"

The p53 pathway plays an important role in role in cancer immunity. Mutation or downregulation of the proteins in the p53 pathway are prevalent in many cancers, contributing to tumor progression and immune dysregulation. Recent findings suggest that the activity of p53 within tumor cells, immune cells, and the tumor microenvironment can play an important role modulating natural killer (NK) cell-mediated immunity.

View Article and Find Full Text PDF

Dermatomyositis (DM) is a rare idiopathic inflammatory myopathy (IIM) associated with an increased risk for malignancy. Although cancer screening is recommended, no consensus guidelines currently exist. Whole-body positron emission tomography/ computed tomography (PET/CT) has similar cost and efficacy to a more traditional conventional cancer screening panel (CSP).

View Article and Find Full Text PDF

Introduction: Paraneoplastic pemphigus (PNP) is a rare, often fatal, autoimmune blistering disease of the skin and mucous membranes. In children, PNP is frequently associated with Castleman disease (CD). This series describes five cases of PNP associated with CD.

View Article and Find Full Text PDF

The aldehyde dehydrogenases (ALDHs) are a family of detoxifying enzymes that are overexpressed in various cancers. Increased expression of ALDH is associated with poor prognosis, stemness, and drug resistance. Because of the critical role of ALDH in cancer stem cells, several ALDH inhibitors have been developed.

View Article and Find Full Text PDF

The aldehyde dehydrogenases (ALDH) are a major family of detoxifying enzymes that contribute to cancer progression and therapy resistance. ALDH overexpression is associated with a poor prognosis in many cancer types. The use of multi-ALDH isoform or isoform-specific ALDH inhibitors as anticancer agents is currently hindered by the lack of viable candidates.

View Article and Find Full Text PDF

The location of the patient's lesions and multiple risk factors suggested that an uncommon disorder was at work.

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDHs) are highly expressed in the chemotherapy- and radiotherapy-resistant cell subpopulations of many different cancer types. Accordingly, the development of ALDH inhibitors may be the most direct approach to target these cell populations. However, inhibiting multiple ALDH family members can be toxic and isoform-specific inhibition is often ineffective.

View Article and Find Full Text PDF

The role of aldehyde dehydrogenase (ALDH) in carcinogenesis and resistance to cancer therapies is well known. Mounting evidence also suggests a potentially important role for ALDH in the induction and function of regulatory T (Treg) cells. Treg cells are important cells of the immune system involved in promoting immune tolerance and preventing aberrant immune responses to beneficial or non-harmful antigens.

View Article and Find Full Text PDF

Poland syndrome is a rare congenital disorder characterized by agenesis of the pectoralis major muscle. It is generally unilateral, right-sided, and can be associated with a myriad of thoracic and upper limb defects. Knowledge of this disorder can lead the astute clinician to prompt diagnosis and referral to surgical specialists for further workup.

View Article and Find Full Text PDF

Varying the reduced mass of an oscillator via isotopic substitution provides a convenient means to alter its vibrational frequency and hence has found wide applications. Herein, we show that this method can also help delineate the vibrational relaxation mechanism, using four isotopomers of the unnatural amino acid p-cyano-phenylalanine (Phe-CN) as models. In water, the nitrile stretching frequencies of these isotopomers, Phe-(12)C(14)N (1), Phe-(12)C(15)N (2), Phe-(13)C(14)N (3), and Phe-(13)C(15)N (4), are found to be equally separated by ∼27 cm(-1), whereas their vibrational lifetimes are determined to be 4.

View Article and Find Full Text PDF

Bioorthogonal reactions for labeling biomolecules in live cells have been limited by slow reaction rates or low component selectivity and stability. Ideal bioorthogonal reactions with high reaction rates, high selectivity, and high stability would allow for stoichiometric labeling of biomolecules in minutes and eliminate the need to wash out excess labeling reagent. Currently, no general method exists for controlled stoichiometric or substoichiometric labeling of proteins in live cells.

View Article and Find Full Text PDF

We have synthesized the unnatural amino acid (UAA), 4-azidomethyl-L-phenylalanine (pN₃CH₂Phe), to serve as an effective vibrational reporter of local protein environments. The position, extinction coefficient, and sensitivity to local environment of the azide asymmetric stretch vibration of pN₃CH₂Phe are compared to the vibrational reporters: 4-cyano-L-phenylalanine (pCNPhe) and 4-azido-L-phenylalanine (pN₃Phe). This UAA was genetically incorporated in a site-specific manner utilizing an engineered, orthogonal aminoacyl-tRNA synthetase in response to an amber codon with high efficiency and fidelity into two distinct sites in superfolder green fluorescent protein (sfGFP).

View Article and Find Full Text PDF

The ability to genetically incorporate amino acids modified with spectroscopic reporters site-specifically into proteins with high efficiency and fidelity has greatly enhanced the ability to probe local protein structure and dynamics. Here, we have synthesized the unnatural amino acid (UAA), 4-cyano-L-phenylalanine (pCNPhe), containing the nitrile vibrational reporter and three isotopomers ((15)N, (13)C, (13)C(15)N) of this UAA to enhance the ability of pCNPhe to study local protein environments. Each pCNPhe isotopic variant was genetically incorporated in an efficient, site-specific manner into superfolder green fluorescent protein (sfGFP) in response to an amber codon with high fidelity utilizing an engineered, orthogonal aminoacyl-tRNA synthetase.

View Article and Find Full Text PDF