Publications by authors named "Christopher Fiorese"

Mitochondrial function is central to many different processes in the cell, from oxidative phosphorylation to the synthesis of iron-sulfur clusters. Therefore, mitochondrial dysfunction underlies a diverse array of diseases, from neurodegenerative diseases to cancer. Stress can be communicated to the cytosol and nucleus from the mitochondria through many different signals, and in response the cell can effect everything from transcriptional to post-transcriptional responses to protect the mitochondrial network.

View Article and Find Full Text PDF

Mitochondrial dysfunction is pervasive in human pathologies such as neurodegeneration, diabetes, cancer, and pathogen infections as well as during normal aging. Cells sense and respond to mitochondrial dysfunction by activating a protective transcriptional program known as the mitochondrial unfolded protein response (UPR(mt)), which includes genes that promote mitochondrial protein homeostasis and the recovery of defective organelles [1, 2]. Work in Caenorhabditis elegans has shown that the UPR(mt) is regulated by the transcription factor ATFS-1, which is regulated by organelle partitioning.

View Article and Find Full Text PDF

Mitochondrial diseases and aging are associated with defects in the oxidative phosphorylation machinery (OXPHOS), which are the only complexes composed of proteins encoded by separate genomes. To better understand genome coordination and OXPHOS recovery during mitochondrial dysfunction, we examined ATFS-1, a transcription factor that regulates mitochondria-to-nuclear communication during the mitochondrial UPR, via ChIP-sequencing. Surprisingly, in addition to regulating mitochondrial chaperone, OXPHOS complex assembly factor, and glycolysis genes, ATFS-1 bound directly to OXPHOS gene promoters in both the nuclear and mitochondrial genomes.

View Article and Find Full Text PDF

Metazoans identify and eliminate bacterial pathogens in microbe-rich environments such as the intestinal lumen; however, the mechanisms are unclear. Host cells could potentially use intracellular surveillance or stress response programs to detect pathogens that target monitored cellular activities and then initiate innate immune responses. Mitochondrial function is evaluated by monitoring mitochondrial protein import efficiency of the transcription factor ATFS-1, which mediates the mitochondrial unfolded protein response (UPR(mt)).

View Article and Find Full Text PDF

During development and cellular differentiation, tissue- and cell-specific programs mediate mitochondrial biogenesis to meet physiological needs. However, environmental and disease-associated factors can perturb mitochondrial activities, requiring cells to adapt to protect mitochondria and maintain cellular homeostasis. Several mitochondrion-to-nucleus signaling pathways, or retrograde responses, have been described, but the mechanisms by which mitochondrial stress or dysfunction is sensed to coordinate precisely the appropriate response has only recently begun to be understood.

View Article and Find Full Text PDF

Harnessing DCs for immunotherapies in vivo requires the elucidation of the physiological role of distinct DC populations. Migratory DCs traffic from peripheral tissues to draining lymph nodes charged with tissue self antigens. We hypothesized that these DC populations have a specialized role in the maintenance of peripheral tolerance, specifically, to generate suppressive Foxp3+ Tregs.

View Article and Find Full Text PDF

To better understand the response to mitochondrial dysfunction, we examined the mechanism by which ATFS-1 (activating transcription factor associated with stress-1) senses mitochondrial stress and communicates with the nucleus during the mitochondrial unfolded protein response (UPR(mt)) in Caenorhabditis elegans. We found that the key point of regulation is the mitochondrial import efficiency of ATFS-1. In addition to a nuclear localization sequence, ATFS-1 has an N-terminal mitochondrial targeting sequence that is essential for UPR(mt) repression.

View Article and Find Full Text PDF

Members of the triggering expressed on myeloid cells (Trem) receptor family fine-tune inflammatory responses. We previously identified one of these receptors, called Treml4, expressed mainly in the spleen, as well as at high levels by CD8α(+) dendritic cells and macrophages. Like other Trem family members, Treml4 has an Ig-like extracellular domain and a short cytoplasmic tail that associates with the adaptor DAP12.

View Article and Find Full Text PDF

Improved protein-based vaccines should facilitate the goal of effective vaccines against HIV and other pathogens. With respect to T cells, the efficiency of immunization, or "immunogenicity," is improved by targeting vaccine proteins to maturing dendritic cells (DCs) within mAbs to DC receptors. Here, we compared the capacity of Langerin/CD207, DEC205/CD205, and Clec9A receptors, each expressed on the CD8(+) DC subset in mice, to bring about immunization of microbial-specific T cells from the polyclonal repertoire, using HIV gag-p24 protein as an antigen.

View Article and Find Full Text PDF

Foxp3(+)CD25(+)CD4(+) regulatory T cells (Treg) mediate immunological self-tolerance and suppress immune responses. A subset of dendritic cells (DCs) in the intestine is specialized to induce Treg in a TGF-beta- and retinoic acid-dependent manner to allow for oral tolerance. In this study we compare two major DC subsets from mouse spleen.

View Article and Find Full Text PDF