Publications by authors named "Christopher Engelhard"

Monitoring the fluorescence of single-dye-labeled azurin molecules, we observed the reaction of azurin with hexacyanoferrate under controlled redox potential yielding data on the timing of individual (forward and backward) electron transfer (ET) events. Change-point analysis of the time traces demonstrates significant fluctuations of ET rates and of mid-point potential . These fluctuations are a signature of dynamical heterogeneity, here observed on a 14 kDa protein, the smallest to date.

View Article and Find Full Text PDF

Early research on the four microbial rhodopsins discovered in the archaeal Halobacterium salinarum revealed a structural template that served as a scaffold for two different functions: light-driven ion transport and phototaxis. Bacteriorhodopsin and halorhodopsin are proton and chloride pumps, respectively, while sensory rhodopsin I and II are responsible for phototactic behavior of the archaea. Halorhodopsins have been identified in various other species.

View Article and Find Full Text PDF

Sensory photoreceptors absorb light via their photosensor modules and trigger downstream physiological adaptations via their effector modules. Light reception accordingly depends on precisely orchestrated interactions between these modules, the molecular details of which often remain elusive. Using electron-electron double resonance (ELDOR) spectroscopy and site-directed spin labelling, we chart the structural transitions facilitating blue-light reception in the engineered light-oxygen-voltage (LOV) histidine kinase YF1 which represents a paradigm for numerous natural signal receptors.

View Article and Find Full Text PDF

Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression.

View Article and Find Full Text PDF

Mononuclear molybdoenzymes catalyze a broad range of redox reactions and are highly conserved in all kingdoms of life. This study addresses the question of how the Mo cofactor (Moco) is incorporated into the apo form of human sulfite oxidase (hSO) by using site-directed spin labeling to determine intramolecular distances in the nanometer range. Comparative measurements of the holo and apo forms of hSO enabled the localization of the corresponding structural changes, which are localized to a short loop (residues 263-273) of the Moco-containing domain.

View Article and Find Full Text PDF

Cryptochromes are blue light receptors with multiple signaling roles in plants and animals. Plant cryptochrome (cry1 and cry2) biological activity has been linked to flavin photoreduction via an electron transport chain comprising three evolutionarily conserved tryptophan residues known as the Trp triad. Recently, it has been reported that cry2 Trp triad mutants, which fail to undergo photoreduction in vitro, nonetheless show biological activity in vivo, raising the possibility of alternate signaling pathways.

View Article and Find Full Text PDF

As light-regulated actuators, sensory photoreceptors underpin optogenetics and numerous applications in synthetic biology. Protein engineering has been applied to fine-tune the properties of photoreceptors and to generate novel actuators. For the blue-light-sensitive light-oxygen-voltage (LOV) photoreceptors, mutations near the flavin chromophore modulate response kinetics and the effective light responsiveness.

View Article and Find Full Text PDF

Flavoproteins often employ radical mechanisms in their enzymatic reactions. This involves paramagnetic species, which can ideally be investigated with electron paramagnetic resonance (EPR) spectroscopy. In this chapter we focus on the example of flavin-based photoreceptors and discuss, how different EPR methods have been used to extract information about the flavin radical's electronic state, its binding pocket, electron-transfer pathways, and about the protein's tertiary and quaternary structure.

View Article and Find Full Text PDF

Channelrhodopsin is a cation channel with the unique property of being activated by light. To address structural changes of the open state of the channel, two variants, which contain either 1 or 2 wild-type cysteines, were derivatised with nitroxide spin label and subjected to electron paramagnetic resonance spectroscopy. Both variants contained the C128T mutation to trap the long-lived P3(520) state by illumination.

View Article and Find Full Text PDF

A model for the full-length structure of the blue light-sensing protein YtvA from Bacillus subtilis has been determined by EPR spectroscopy, performed on spin labels selectively inserted at amino acid positions 54, 80, 117 and 179. Our data indicate that YtvA forms a dimer in solution and enable us, based on the known structures of the individual domains and modelling, to propose a three-dimensional model for the full length protein. Most importantly, this includes the YtvA N-terminus that has so far not been identified in any structural model.

View Article and Find Full Text PDF