Obesity, insulin resistance, and a host of environmental and genetic factors can drive hyperglycemia, causing β-cells to compensate by increasing insulin production and secretion. In type 2 diabetes (T2D), β-cells under these conditions eventually fail. Rare β-cell diseases like congenital hyperinsulinism (HI) also cause inappropriate insulin secretion, and some HI patients develop diabetes.
View Article and Find Full Text PDFDespite great progress in understanding lipoprotein physiology, there is still much to be learned about the genetic drivers of lipoprotein abundance, composition, and function. We used ion mobility spectrometry to survey 16 plasma lipoprotein subfractions in 500 Diversity Outbred mice maintained on a Western-style diet. We identified 21 quantitative trait loci (QTL) affecting lipoprotein abundance.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is the leading cause of end-stage renal disease in the U.S. and has a significant impact on human suffering.
View Article and Find Full Text PDFInsufficient insulin secretion to meet metabolic demand results in diabetes. The intracellular flux of Ca into β-cells triggers insulin release. Since genetics strongly influences variation in islet secretory responses, we surveyed islet Ca dynamics in eight genetically diverse mouse strains.
View Article and Find Full Text PDFInsulin secretion from pancreatic β cells is essential to the maintenance of glucose homeostasis. Defects in this process result in diabetes. Identifying genetic regulators that impair insulin secretion is crucial for the identification of novel therapeutic targets.
View Article and Find Full Text PDFInsulin secretion from pancreatic β cells is essential for glucose homeostasis. An insufficient response to the demand for insulin results in diabetes. We previously showed that β cell-specific deletion of Zfp148 (β-Zfp148KO) improves glucose tolerance and insulin secretion in mice.
View Article and Find Full Text PDFCantu syndrome (CS) is caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits, the most common mutations being SUR2[R1154Q] and SUR2[R1154W], carried by approximately 30% of patients. We used CRISPR/Cas9 genome engineering to introduce the equivalent of the human SUR2[R1154Q] mutation into the mouse ABCC9 gene.
View Article and Find Full Text PDFGenetic susceptibility to type 2 diabetes is primarily due to β-cell dysfunction. However, a genetic study to directly interrogate β-cell function ex vivo has never been previously performed. We isolated 233,447 islets from 483 Diversity Outbred (DO) mice maintained on a Western-style diet, and measured insulin secretion in response to a variety of secretagogues.
View Article and Find Full Text PDFIslet β-cell membrane excitability is a well-established regulator of mammalian insulin secretion, and defects in β-cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration-response relationship to mammalian β-cells.
View Article and Find Full Text PDFAssessing the response of pancreatic islet cells to glucose stimulation is important for understanding β-cell function. Zebrafish are a promising model for studies of metabolism in general, including stimulus-secretion coupling in the pancreas. We used transgenic zebrafish embryos expressing a genetically-encoded Ca sensor in pancreatic β-cells to monitor a key step in glucose induced insulin secretion; the elevations of intracellular [Ca].
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
December 2018
Gain-of-function (GOF) mutations in the ATP-sensitive potassium (K) channels cause neonatal diabetes. Despite the well-established genetic root of the disease, pathways modulating disease severity and treatment effectiveness remain poorly understood. Patient phenotypes can vary from severe diabetes to remission, even in individuals with the same mutation and within the same family, suggesting that subtle modifiers can influence disease outcome.
View Article and Find Full Text PDFIn clinical trials, inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels but does not robustly improve cardiovascular outcomes. Approximately two-thirds of trial participants are obese. Lower plasma CETP activity is associated with increased cardiovascular risk in human studies, and protective aspects of CETP have been observed in mice fed a high-fat diet (HFD) with regard to metabolic outcomes.
View Article and Find Full Text PDFATP-sensitive potassium channels (K channels) are critical nutrient sensors in many mammalian tissues. In the pancreas, K channels are essential for coupling glucose metabolism to insulin secretion. While orthologous genes for many components of metabolism-secretion coupling in mammals are present in lower vertebrates, their expression, functionality and ultimate impact on body glucose homeostasis are unclear.
View Article and Find Full Text PDFType 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges.
View Article and Find Full Text PDFThe development of insulin resistance in the liver is a key event that drives dyslipidemia and predicts diabetes and cardiovascular risk with obesity. Clinical data show that estrogen signaling in males helps prevent adiposity and insulin resistance, which may be mediated through estrogen receptor-α (ERα). The tissues and pathways that mediate the benefits of estrogen signaling in males with obesity are not well defined.
View Article and Find Full Text PDFCholesteryl ester transfer protein (CETP) shuttles lipids between lipoproteins, culminating in cholesteryl ester delivery to liver and increased secretion of cholesterol as bile. Since gut bile acids promote insulin sensitivity, we aimed to define if CETP improves insulin sensitivity with high-fat feeding. CETP and nontransgenic mice of both sexes became obese.
View Article and Find Full Text PDFMechanisms underlying changes in HDL composition caused by obesity are poorly defined, partly because mice lack expression of cholesteryl ester transfer protein (CETP), which shuttles triglyceride and cholesteryl ester between lipoproteins. Because menopause is associated with weight gain, altered glucose metabolism, and changes in HDL, we tested the effect of feeding a high-fat diet (HFD) and ovariectomy (OVX) on glucose metabolism and HDL composition in CETP transgenic mice. After OVX, female CETP-expressing mice had accelerated weight gain with HFD-feeding and impaired glucose tolerance by hyperglycemic clamp techniques, compared with OVX mice fed a low-fat diet (LFD).
View Article and Find Full Text PDF