Publications by authors named "Christopher E Shaw"

Sex is an important covariate in all genetic and epigenetic research due to its role in the incidence, progression and outcome of many phenotypic characteristics and human diseases. Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a sex bias towards higher incidence in males. Here, we report for the first time a blood-based epigenome-wide association study meta-analysis in 9274 individuals after stringent quality control (5529 males and 3975 females).

View Article and Find Full Text PDF
Article Synopsis
  • Repeat expansions in the C9orf72 gene are a leading genetic cause of ALS and frontotemporal dementia, but understanding how this mutation causes neuron death is still unclear, complicating the search for effective therapies.
  • Researchers analyzed data from over 41,000 ALS and healthy samples to identify potential treatments, discovering that acamprosate, a drug used for other conditions, might be repurposed for C9orf72-related diseases.
  • Their findings demonstrated that acamprosate has neuroprotective properties in cell models and works similarly well as the current treatment, riluzole, showing the potential of using genomic data to find new drug applications.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the safety, tolerability, and pharmacokinetics of BIIB078, an investigational treatment targeting the genetic cause of amyotrophic lateral sclerosis (ALS) linked to the C9orf72 gene mutation.
  • The trial involved 106 participants with C9orf72-associated ALS, who were randomly assigned to receive varying doses of BIIB078 or a placebo over a treatment period of three to six months.
  • Results showed that all participants experienced at least one adverse event, mostly mild or moderate, indicating that while BIIB078 did pose some risks, it did not lead to a high rate of treatment discontinuation.
View Article and Find Full Text PDF

Objective: Neurofilament heavy-chain gene (NEFH) variants are associated with multiple neurodegenerative diseases, however, their relationship with ALS has not been robustly explored. Still, NEFH is commonly included in genetic screening panels worldwide. We therefore aimed to determine if NEFH variants modify ALS risk.

View Article and Find Full Text PDF
Article Synopsis
  • Pathogenic variants in the UBQLN2 gene lead to unique forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) with distinct aggregate patterns in the brain.
  • Although ubiquilin 2 aggregates are also observed in other cases of ALS and FTD, including those linked to different genes like C9orf72, their role in disease prediction remains uncertain.
  • The study analyzed 44 ALS cases to identify differences in protein aggregation patterns between mutant and wild-type ubiquilin 2, revealing that mutant forms are more likely to aggregate independently, which may aid in assessing the disease mechanism associated with UBQLN2 variants.
View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft.

View Article and Find Full Text PDF

Variants in the superoxide dismutase () gene are among the most common genetic causes of amyotrophic lateral sclerosis. Reflecting the wide spectrum of putatively deleterious variants that have been reported to date, it has become clear that -linked ALS presents a highly variable age at symptom onset and disease duration. Here we describe an open access web tool for comparative phenotype analysis in ALS: https://sod1-als-browser.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting the upper and lower motor neurons, causing patients to lose control over voluntary movement, and leading to gradual paralysis and death. There is no cure for ALS, and the development of viable therapeutics has proved challenging, demonstrated by a lack of positive results from clinical trials. One strategy to address this is to improve the tool kit available for pre-clinical research.

View Article and Find Full Text PDF

Caveolin-1 and Caveolin-2 (CAV1 and CAV2) are proteins associated with intercellular neurotrophic signalling. There is converging evidence that CAV1 and CAV2 (CAV1/2) genes have a role in amyotrophic lateral sclerosis (ALS). Disease-associated variants have been identified within CAV1/2 enhancers, which reduce gene expression and lead to disruption of membrane lipid rafts.

View Article and Find Full Text PDF
Article Synopsis
  • Humans appear more prone to neurodegeneration than similarly aged primates, and it's unclear if this trait is unique to modern humans or shared with other hominids.
  • The study explored the potential impact of Neanderthal DNA on neurodegenerative disorders and examined the role of natural selection on genetic variants linked to these diseases using advanced statistical methods.
  • Findings indicated that there is no significant evidence that Neanderthal DNA or positively-selected genetic variants contribute to the genetic risk of Alzheimer's, ALS, or Parkinson's disease, helping to clarify the evolutionary background of these disorders in modern humans.
View Article and Find Full Text PDF
Article Synopsis
  • - Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease marked by the loss of motor neurons, often leading to death from respiratory failure within 3 to 5 years, with a significant genetic component influencing its risk.
  • - A study analyzed telomere length using genetic data from 6,195 ALS patients and controls, revealing that individuals with ALS had 20% longer telomeres compared to controls after adjusting for age and sex, and this finding was validated using brain samples.
  • - Interestingly, shorter telomeres were associated with a 10% increase in median survival among ALS patients, suggesting that telomere length may play a role in the disease's progression and overall survival chances.
View Article and Find Full Text PDF
Article Synopsis
  • * This study compares people with SOD1-related ALS to those without SOD1 variants, using extensive data from both groups to analyze age at symptom onset and survival time.
  • * Findings indicate that certain SOD1 variants are tied to younger ages of onset and unique survival patterns, suggesting that onset and survival can be independent in SOD1-ALS cases, highlighting the need for further research on rare variants.
View Article and Find Full Text PDF

Introduction/aims: Fasciculations are an early clinical hallmark of amyotrophic lateral sclerosis (ALS), amenable to detection by high-density surface electromyography (HDSEMG). In conjunction with the Surface Potential Quantification Engine (SPiQE), HDSEMG offers improved spatial resolution for the analysis of fasciculations. This study aims to establish an optimal recording duration to enable longitudinal remote monitoring in the home.

View Article and Find Full Text PDF

Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro and in transgenic animal models of amyotrophic lateral sclerosis. Detailed examination of the protein in disease-affected tissues from amyotrophic lateral sclerosis patients, however, remains scarce. We used histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from amyotrophic lateral sclerosis cases and controls.

View Article and Find Full Text PDF
Article Synopsis
  • Amyotrophic lateral sclerosis (ALS) is a deadly neurodegenerative disease with a significant genetic component, and changes in DNA methylation can provide insights into its progression and risk factors.* -
  • A large study analyzed blood samples from nearly 10,000 individuals, identifying 45 specific DNA methylation changes linked to 42 genes, which are involved in metabolism, cholesterol production, and immune response.* -
  • The research found that lifestyle factors like cholesterol levels, body mass index, and alcohol consumption are independently linked to ALS, and certain DNA methylation patterns could help predict patient survival and guide future treatments.*
View Article and Find Full Text PDF

There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability.

View Article and Find Full Text PDF

Rationale: Dextro-transposition of the great arteries (D-TGA) is a severe congenital heart defect which affects approximately 1 in 4,000 live births. While there are several reports of D-TGA patients with rare variants in individual genes, the majority of D-TGA cases remain genetically elusive. Familial recurrence patterns and the observation that most cases with D-TGA are sporadic suggest a polygenic inheritance for the disorder, yet this remains unexplored.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects.

View Article and Find Full Text PDF
Article Synopsis
  • - Evidence suggests that genetic variants identified in genome-wide studies can affect disease risk by impacting gene expression, particularly regarding Amyotrophic Lateral Sclerosis (ALS).
  • - Research utilized public data and Mendelian Randomization to establish that a specific gene significantly influences ALS risk through expression Quantitative Trait Loci (eQTL), revealing differences in gene expression in ALS patients compared to controls.
  • - Among the 20,757 genes examined, two key eQTLs, linked to known ALS genes, displayed significant differential expression and were found to affect survival rates in ALS patients, indicating their role as important regulatory elements in ALS pathology.
View Article and Find Full Text PDF

Importance: Juvenile amyotrophic lateral sclerosis (ALS) is a rare form of ALS characterized by age of symptom onset less than 25 years and a variable presentation.

Objective: To identify the genetic variants associated with juvenile ALS.

Design, Setting, And Participants: In this multicenter family-based genetic study, trio whole-exome sequencing was performed to identify the disease-associated gene in a case series of unrelated patients diagnosed with juvenile ALS and severe growth retardation.

View Article and Find Full Text PDF

Transactive response DNA binding protein 43 (TDP-43) is an RNA processing protein central to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Nuclear TDP-43 mislocalizes in patients to the cytoplasm, where it forms ubiquitin-positive inclusions in affected neurons and glia. Physiologically, cytoplasmic TDP-43 is associated with stress granules (SGs).

View Article and Find Full Text PDF

Loss of function (LoF) mutations in Optineurin can cause recessive amyotrophic lateral sclerosis (ALS) with some heterozygous LoF mutations associated with dominant ALS. The molecular mechanisms underlying the variable inheritance pattern associated with OPTN mutations have remained elusive. We identified that affected members of a consanguineous Middle Eastern ALS kindred possessed a novel homozygous p.

View Article and Find Full Text PDF

Genes encoding replication-dependent histones lack introns, and the mRNAs produced are a unique class of RNA polymerase II transcripts in eukaryotic cells that do not end in a polyadenylated tail. Mature mRNAs are thus formed by a single endonucleolytic cleavage that releases the pre-mRNA from the DNA and is the only processing event necessary. U7 snRNP is one of the key factors that determines the cleavage site within the 3'UTR of replication-dependent histone pre-mRNAs.

View Article and Find Full Text PDF