Snakebites affect about 1.8 million people annually. The current standard of care involves antibody-based antivenoms, which can be difficult to access and are generally not effective against local tissue injury, the primary cause of morbidity.
View Article and Find Full Text PDFClustered regularly interspaced short palindromic repeats (CRISPR) activation (CRISPRa) has become an integral part of the molecular biology toolkit. CRISPRa genetic screens are an exciting high-throughput means of identifying genes the upregulation of which is sufficient to elicit a given phenotype. Activation machinery is continually under development to achieve greater, more robust, and more consistent activation.
View Article and Find Full Text PDFBackground: Respiratory diseases are the 2nd leading cause of death globally. The current treatments for chronic lung diseases are only supportive. Very few new classes of therapeutics have been introduced for lung diseases in the last 40 years, due to the lack of reliable lung models that enable rapid, cost-effective, and high-throughput testing.
View Article and Find Full Text PDFAlthough ACE2 is the primary receptor for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, a systematic assessment of host factors that regulate binding to SARS-CoV-2 spike protein has not been described. Here, we use whole-genome CRISPR activation to identify host factors controlling cellular interactions with SARS-CoV-2. Our top hit was a TLR-related cell surface receptor called leucine-rich repeat-containing protein 15 (LRRC15).
View Article and Find Full Text PDFDirected evolution uses cycles of gene diversification and selection to generate proteins with novel properties. While traditionally directed evolution is performed in prokaryotic systems, recently a mammalian directed evolution system (viral evolution of genetically actuating sequences, or "VEGAS") has been described. Here we report that the VEGAS system has major limitations that preclude its use for directed evolution.
View Article and Find Full Text PDFModification of the human genome has immense potential for preventing or treating disease. Modern genome editing techniques based on CRISPR/Cas9 show great promise for altering disease-relevant genes. The efficacy of precision editing at CRISPR/Cas9-induced double-strand breaks is dependent on the relative activities of nuclear DNA repair pathways, including the homology-directed repair and error-prone non-homologous end-joining pathways.
View Article and Find Full Text PDFAccess Microbiol
March 2021
HSV-1 envelope glycoprotein E (gE) is important for viral egress and cell-to-cell spread but the host protein(s) involved in these functions have yet to be determined. We aimed to investigate a role for the Arp2/3 complex and actin regulation in viral egress based on the identification of a WAVE Regulatory Complex (WRC) Interacting Receptor Sequence (WIRS) in the cytoplasmic tail (CT) of gE. A WIRS-dependent interaction between the gE(CT) and subunits of the WRC was demonstrated by GST-pulldown assay and a role for the Arp2/3 complex in cell-to-cell spread was also observed by plaque assay.
View Article and Find Full Text PDFClustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) together with CRISPR-associated (Cas) proteins have catalysed a revolution in genetic engineering. Native CRISPR-Cas systems exist in many bacteria and archaea where they provide an adaptive immune response through sequence-specific degradation of an invading pathogen's genome. This system has been reconfigured for use in genome editing, drug development, gene expression regulation, diagnostics, the prevention and treatment of cancers, and the treatment of genetic and infectious diseases.
View Article and Find Full Text PDFHerpes simplex virus type 1 (HSV-1) is a prevalent and important human pathogen that has been studied in a wide variety of contexts. This book provides protocols currently in use in leading laboratories in many fields of HSV-1 research. This introductory chapter gives a brief overview of HSV-1 biology and life cycle, covering basic aspects of virus structure, the prevalence of and diseases caused by the virus, replication in cultured cells, viral latency, antiviral defenses, and the mechanisms that the virus uses to counteract these defenses.
View Article and Find Full Text PDFHerpes simplex virus type 1 (HSV-1) is a neuroinvasive human pathogen that has the ability to infect and replicate within epithelial cells and neurons and establish a life-long latent infection in sensory neurons. HSV-1 depends on the host cellular cytoskeleton for entry, replication, and exit. Therefore, HSV-1 has adapted mechanisms to promote its survival by exploiting the microtubule and actin cytoskeletons to direct its active transport, infection, and spread between neurons and epithelial cells during primary and recurrent infections.
View Article and Find Full Text PDFActin filaments, microtubules and intermediate filaments form the cytoskeleton of vertebrate cells. Involved in maintaining cell integrity and structure, facilitating cargo and vesicle transport, remodelling surface structures and motility, the cytoskeleton is necessary for the successful life of a cell. Because of the broad range of functions these filaments are involved in, they are common targets for viral pathogens, including the alphaherpesviruses.
View Article and Find Full Text PDF