The free energy landscape of catalytic intermediates in the two-electron reduction of proton donors and/or CO to H, CO and HCO is mapped with density functional theory to screen catalyst candidates from a library of different transition metals and ligands. The goal is to minimize the free energy corrugations between reactants, catalytic intermediates and each desired product, simultaneously screening against intermediates with low free energy that would be traps, and against necessary intermediates with high free energy. Catalysts are initially screened for those with: (a) standard state free energy of the metal hydride intermediate ergoneutral with HCO , which is the lowest energy product with weak proton donors, and (b) standard free energy of the metal carbonyl intermediate sufficiently high to avoid trapping.
View Article and Find Full Text PDFThe one-electron reduction of [CpRu(bpy)NCCH]PF (Cp = cyclopentadienyl; bpy = 2,2'-bipyridine), abbreviated as [Ru-S], where S = CHCN, in CO-saturated acetonitrile initiates a cascade of rapid electrochemical and chemical steps (ECEC) at an electrode potential of ca. 100 mV positive of the first reduction of the ruthenium complex. The overall two-electron process leads to the generation of a CO-bound ruthenium complex, [Ru-CO], and carbonate, as independently confirmed by NMR spectroscopy.
View Article and Find Full Text PDFThe dicationic complex [CpCo(azpy)(CHCN)](ClO) 1 (azpy = phenylazopyridine) exhibits a reversible two-electron reduction at a very mild potential (-0.16 V versus Fc) in acetonitrile. This behavior is not observed with the analogous bipyridine and pyrazolylpyridine complexes (3 and 4), which display an electrochemical signature typical of Co systems: two sequential one-electron reductions to Co at -0.
View Article and Find Full Text PDFOctahedral ruthenium complexes [RuX(CNN)(dppb)] (1, X = Cl; 2, X = H; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) are highly active for the transfer hydrogenation of ketones with isopropanol under ambient conditions. Turnover frequencies of 0.88 and 0.
View Article and Find Full Text PDFWe synthesized nanoscale TiO2-RuO2 alloys by atomic layer deposition (ALD) that possess a high work function and are highly conductive. As such, they function as good Schottky contacts to extract photogenerated holes from n-type silicon while simultaneously interfacing with water oxidation catalysts. The ratio of TiO2 to RuO2 can be precisely controlled by the number of ALD cycles for each precursor.
View Article and Find Full Text PDFAtomic layer deposited (ALD) TiO2 protection layers may allow for the development of both highly efficient and stable photoanodes for solar fuel synthesis; however, the very different conductivities and photovoltages reported for TiO2-protected silicon anodes prepared using similar ALD conditions indicate that mechanisms that set these key properties are, as yet, poorly understood. In this report, we study hydrogen-containing annealing treatments and find that postcatalyst-deposition anneals at intermediate temperatures reproducibly yield decreased oxide/silicon interface trap densities and high photovoltage. A previously reported insulator thickness-dependent photovoltage loss in metal-insulator-semiconductor Schottky junction photoanodes is suppressed.
View Article and Find Full Text PDFSilicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst.
View Article and Find Full Text PDFThe ruthenium hydride [RuH(CNN)(dppb)] (1; CNN = 2-aminomethyl-6-tolylpyridine, dppb = 1,4-bis(diphenylphosphino)butane) reacts rapidly and irreversibly with CO2 under ambient conditions to yield the corresponding Ru formate complex 2. In contrast, the Ru hydride 1 reacts with acetone reversibly to generate the Ru isopropoxide, with the reaction free energy ΔG°(298 K) = -3.1 kcal/mol measured by (1)H NMR in tetrahydrofuran-d8.
View Article and Find Full Text PDFA series of square-planar nickel hydride complexes supported by bis(phosphinite) pincer ligands with varying substituents (-OMe, -Me, and -Bu ) on the pincer backbone have been synthesized and completely characterized by NMR spectroscopy, IR spectroscopy, elemental analysis, and X-ray crystallography. Their cyclic voltammograms show irreversible oxidation peaks (peak potentials from 101 to 316 mV Fc/Fc) with peak currents consistent with overall one-electron oxidations. Chemical oxidation by the one-electron oxidant Ce(NBu)(NO) was studied by NMR spectroscopy, which provided quantitative evidence for post-oxidative H evolution leading to a solvent-coordinated nickel(ii) species with the pincer backbone intact.
View Article and Find Full Text PDFMetal oxide protection layers for photoanodes may enable the development of large-scale solar fuel and solar chemical synthesis, but the poor photovoltages often reported so far will severely limit their performance. Here we report a novel observation of photovoltage loss associated with a charge extraction barrier imposed by the protection layer, and, by eliminating it, achieve photovoltages as high as 630 mV, the maximum reported so far for water-splitting silicon photoanodes. The loss mechanism is systematically probed in metal-insulator-semiconductor Schottky junction cells compared to buried junction p(+)n cells, revealing the need to maintain a characteristic hole density at the semiconductor/insulator interface.
View Article and Find Full Text PDFRuthenium transfer hydrogenation catalysts physisorbed onto edge-plane graphite electrodes are active electrocatalysts for the oxidation of alcohols. Electrooxidation of CH3OH (1.23 M) in a buffered aqueous solution at pH 11.
View Article and Find Full Text PDFA terminal alkyne is immobilized rapidly into a full monolayer by squishing a small volume of a solution of the alkyne between an azide-modified surface and a copper plate. The monolayer is covalently attached to the surface through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, and the coverages of the immobilized electroactive alkyne species are quantified by cyclic voltammetry. A reaction time of less than 20 s is possible with no other reagents required.
View Article and Find Full Text PDFTailoring the surface and interfacial properties of inexpensive and abundant carbon materials plays an increasingly important role for innovative applications including those in electrocatalysis, energy storage, gas separations, and composite materials. Described here is the novel preparation and subsequent use of gaseous iodine azide for the azide modification of carbon surfaces. In-line generation of gaseous iodine azide from iodine monochloride vapor and solid sodium azide is safe and convenient.
View Article and Find Full Text PDFWe present a method to fabricate individually addressable junctions of self-assembled monolayers (SAMs) that builds on previous studies which have shown that soft conductive polymer top contacts virtually eliminate shorts through the SAMs. We demonstrate devices with nanoscale lateral dimensions, representing an order of magnitude reduction in device area, with high yield and relatively low device-to-device variation, improving several features of previous soft contact devices. The devices are formed in pores in an inorganic dielectric layer with features defined by e-beam lithography and dry etching.
View Article and Find Full Text PDFA convenient, laboratory-scale method for the vapor deposition of dense siloxane monolayers onto oxide substrates was demonstrated. This method was studied and optimized at 110 °C under reduced pressure with the vapor of tetradecyltris(deuteromethoxy)silane, (CD(3)O)(3)Si(CH(2))(13)CH(3), and water from the dehydration of MgSO(4)·7H(2)O. Ellipsometric thicknesses, water contact angles, Fourier transform infrared (FTIR) spectroscopy, and electrochemical capacitance measurements were used to probe monolayer densification.
View Article and Find Full Text PDFA leading approach for large-scale electrochemical energy production with minimal global-warming gas emission is to use a renewable source of electricity, such as solar energy, to oxidize water, providing the abundant source of electrons needed in fuel synthesis. We report corrosion-resistant, nanocomposite anodes for the oxidation of water required to produce renewable fuels. Silicon, an earth-abundant element and an efficient photovoltaic material, is protected by atomic layer deposition (ALD) of a highly uniform, 2 nm thick layer of titanium dioxide (TiO(2)) and then coated with an optically transmitting layer of a known catalyst (3 nm iridium).
View Article and Find Full Text PDFA Cu(I) complex of 3-ethynyl-phenanthroline covalently immobilized onto an azide-modified glassy carbon surface is an active electrocatalyst for the four-electron (4-e) reduction of O(2) to H(2)O. The rate of O(2) reduction is second-order in Cu coverage at moderate overpotential, suggesting that two Cu(I) species are necessary for efficient 4-e reduction of O(2). Mechanisms for O(2) reduction are proposed that are consistent with the observations for this covalently immobilized system and previously reported results for a similar physisorbed Cu(I) system.
View Article and Find Full Text PDFWe report the selective removal of gold from the tips of germanium nanowires (GeNWs) grown by chemical vapor deposition on gold nanoparticles (AuNPs). Selective removal was accomplished by aqueous hydrochloric acid solutions containing either potassium triiodide or iodine. Measurement of the residual number of gold atoms on the GeNW samples using inductively coupled plasma-mass spectrometry shows that 99% of the gold was removed.
View Article and Find Full Text PDFThe close proximity of two individually addressable electrodes in an interdigitated array provides a unique platform for electrochemical study of multicatalytic processes. Here, we report a "plug-and-play" approach to control the underlying self-assembled monolayer and the electroactive species on each individually addressable electrode of an interdigitated array. The method presented here uses selective anodic desorption of a monolayer from one of the individually addressable electrodes and rapid formation of a different self-assembled monolayer on the freshly cleaned electrode.
View Article and Find Full Text PDFWe demonstrate the p-type doping of Ge nanowires (NWs) and p-n junction arrays in a scalable vertically aligned structure with all processing performed below 400 °C. These structures are advantageous for the large scale production of parallel arrays of devices for nanoelectronics and sensing applications. Efficient methods for the oxide encapsulation, chemical mechanical polishing and cleaning of vertical Ge NWs embedded in silicon dioxide are reported.
View Article and Find Full Text PDFMononuclear Cu complexes with a 1,10-phenanthroline-based ligand adsorbed onto an edge-plane graphite electrode act as electrocatalysts for the 4-electron reduction of O2 to H2O. A mechanism is proposed for the electrocatalytic O2 reduction that accounts for the observed redox and kinetic dependences on coordinating anions and proton donors in the buffer. Systematic increases of ligand electron-withdrawing properties and/or the steric demands near the Cu center increase the E0 of the Cu catalysts but decrease the rate of O2 reduction.
View Article and Find Full Text PDFThe vapor-liquid-solid mechanism of nanowire (NW) growth requires the presence of a liquid at one end of the wire; however, Au-catalyzed Ge nanowire growth by chemical vapor deposition can occur at approximately 100 degrees C below the bulk Au-Ge eutectic. In this paper, we investigate deep sub-eutectic stability of liquid Au-Ge catalysts on Ge NWs quantitatively, both theoretically and experimentally. We construct a binary Au-Ge phase diagram that is valid at the nanoscale and show that equilibrium arguments, based on capillarity, are inconsistent with stabilization of Au-Ge liquid at deep sub-eutectic temperatures, similar to those used in Ge NW growth.
View Article and Find Full Text PDFA linker-free method to deposit citrate-stabilized Au colloids onto hydrogen-terminated Si by acidifying the Au colloid solution with HF or HCl is presented. This method prevents oxide formation and provides a model system for studying orientation control of nanowires by epitaxy. Conditions are reported that result in vertically oriented Ge nanowires of uniform diameter and length on Si(111).
View Article and Find Full Text PDFWe studied the selectivity of a functional model of cytochrome c oxidase's active site that mimics the coordination environment and relative locations of Fe(a3), Cu(B), and Tyr(244). To control electron flux, we covalently attached this model and analogs lacking copper and phenol onto self-assembled monolayer-coated gold electrodes. When the electron transfer rate was made rate limiting, both copper and phenol were required to enhance selective reduction of oxygen to water.
View Article and Find Full Text PDF