Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder typically characterized by insoluble inclusions of hyperphosphorylated TDP-43. The mechanisms underlying toxic TDP-43 accumulation are not understood. Persistent activation of p38 mitogen-activated protein kinase (MAPK) is implicated in ALS.
View Article and Find Full Text PDFHsp70 prevents protein aggregation and is cytoprotective, but sustained Hsp70 overexpression is problematic. Therefore, we characterized small molecule agonists that augment Hsp70 activity. Because cumbersome assays were required to assay agonists, we developed cell-based and in vivo assays in which disease-associated consequences of Hsp70 activation can be quantified.
View Article and Find Full Text PDFBackground: The Restoring Joint Health and Function to Reduce Pain (RE-JOIN) Consortium is part of the Helping to End Addiction Long-term® (HEAL) Initiative. HEAL is an ambitious, NIH-wide initiative to speed scientific solutions to stem the national opioid public health crisis. The RE-JOIN consortium's over-arching goal is to define how chronic joint pain-mediating neurons innervate different articular and -articular tissues, with a focus on the knee and temporomandibular joints (TMJ) across species employing the latest neuroscience approaches.
View Article and Find Full Text PDFAlzheimer's disease (AD) and more than twenty other dementias, termed tauopathies, are pathologically defined by insoluble aggregates of the microtubule-associated protein tau (MAPT). Although tau aggregation correlates with AD symptomology, the specific tau species, i.e.
View Article and Find Full Text PDFGiven the mounting evidence implicating TDP-43 dysfunction in several neurodegenerative diseases, there is a pressing need to establish accessible tools to sense and quantify TDP-43 loss-of-function (LOF). These tools are crucial for assessing potential disease contributors and exploring therapeutic candidates in TDP-43 proteinopathies. Here, we develop a sensitive and accurate real-time sensor for TDP-43 LOF: the CUTS (CFTR UNC13A TDP-43 Loss-of-Function) system.
View Article and Find Full Text PDFObjective: In this study, we explored key prescription drug monitoring program-related outcomes among clinicians from a broad cohort of Massachusetts healthcare facilities following prescription drug monitoring program (PDMP) and electronic health record (EHR) data integration.
Methods: Outcomes included seven-day rolling averages of opioids prescribed, morphine milligram equivalents (MMEs) prescribed, and PDMP queries. We employed a longitudinal study design to analyze PDMP data over a 15-month study period which allowed for six and a half months of pre- and post-integration observations surrounding a two-month integration period.
A summit held March 2023 in Scottsdale, Arizona (USA) focused on the intronic hexanucleotide expansion in the C9ORF72 gene and its relevance in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS; C9ORF72-FTD/ALS). The goal of this summit was to connect basic scientists, clinical researchers, drug developers, and individuals affected by C9ORF72-FTD/ALS to evaluate how collaborative efforts across the FTD-ALS disease spectrum might break down existing disease silos. Presentations and discussions covered recent discoveries in C9ORF72-FTD/ALS disease mechanisms, availability of disease biomarkers and recent advances in therapeutic development, and clinical trial design for prevention and treatment for individuals affected by C9ORF72-FTD/ALS and asymptomatic pathological expansion carriers.
View Article and Find Full Text PDFSolid-like protein deposits found in aged and diseased human brains have revealed a relationship between insoluble protein accumulations and the resulting deficits in neurologic function. Clinically diverse neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, frontotemporal lobar degeneration, and amyotrophic lateral sclerosis, exhibit unique and disease-specific biochemical protein signatures and abnormal protein depositions that often correlate with disease pathogenesis. Recent evidence indicates that many pathologic proteins assemble into liquid-like protein phases through the highly coordinated process of liquid-liquid phase separation.
View Article and Find Full Text PDFProgrammed death protein 1 (PD-1) and its ligand PD-L1 constitute an immune checkpoint pathway. We report that neuronal PD-1 signaling regulates learning/memory in health and disease. Mice lacking PD-1 (encoded by Pdcd1) exhibit enhanced long-term potentiation (LTP) and memory.
View Article and Find Full Text PDFWhile motor and cortical neurons are affected in amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD), it remains largely unknown if and how non-neuronal cells induce or exacerbate neuronal damage. We differentiated ALS/FTD patient-derived induced pluripotent stem cells into microglia (iPSC-MG) and examined their intrinsic phenotypes. Similar to iPSC motor neurons, ALS/FTD iPSC-MG mono-cultures form GC repeat RNA foci, exhibit reduced C9orf72 protein levels, and generate dipeptide repeat proteins.
View Article and Find Full Text PDFObjectives: The authors hypothesized that body core temperature during cardiac arrhythmia procedures in the electrophysiology laboratory declines, and examined the association of changes with the patient or procedural factors. They hypothesized that a greater degree of change negatively affects 1-year ablation success.
Design: Retrospective observational study.
Background: Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclear loss-of-function and cytoplasmic toxic gain-of-function phenotypes. While TDP-43 proteinopathy has been associated with defects in nucleocytoplasmic transport, this process is still poorly understood. Here we study the role of karyopherin-β1 (KPNB1) and other nuclear import receptors in regulating TDP-43 pathology.
View Article and Find Full Text PDFWhen challenged by hypertonicity, dehydrated cells must recover their volume to survive. This process requires the phosphorylation-dependent regulation of SLC12 cation chloride transporters by WNK kinases, but how these kinases are activated by cell shrinkage remains unknown. Within seconds of cell exposure to hypertonicity, WNK1 concentrates into membraneless condensates, initiating a phosphorylation-dependent signal that drives net ion influx via the SLC12 cotransporters to restore cell volume.
View Article and Find Full Text PDFA G4C2 hexanucleotide repeat expansion in the C9orf72 gene is the most common genetic cause of ALS and FTLD (C9-ALS/FTLD) with cytoplasmic TDP-43 inclusions observed in regions of neurodegeneration. The accumulation of repetitive RNAs and dipeptide repeat protein (DPR) are two proposed mechanisms of toxicity in C9-ALS/FTLD and linked to impaired nucleocytoplasmic transport. Nucleocytoplasmic transport is regulated by the phenylalanine-glycine nucleoporins (FG nups) that comprise the nuclear pore complex (NPC) permeability barrier.
View Article and Find Full Text PDFChronic pain remains a significant problem due to its prevalence, impact, and limited therapeutic options. Progress in addressing chronic pain is dependent on a better understanding of underlying mechanisms. Although the available evidence suggests that changes within the central nervous system contribute to the initiation and maintenance of chronic pain, it also suggests that the primary afferent plays a critical role in all phases of the manifestation of chronic pain in most of those who suffer.
View Article and Find Full Text PDFThe fungiform papilla (FP) is a gustatory and somatosensory structure incorporating chorda tympani (CT) nerve fibers that innervate taste buds (TB) and also contain somatosensory endings for touch and temperature. Hedgehog (HH) pathway inhibition eliminates TB, but CT innervation remains in the FP. Importantly, after HH inhibition, CT neurophysiological responses to taste stimuli are eliminated, but tactile responses remain.
View Article and Find Full Text PDFType-I interferon (IFN-I) signaling is critical to maintaining antigen-presenting cell function for anti-tumor immunity. However, recent studies have suggested that IFN-I signaling may also contribute to more aggressive phenotypes, raising the possibility that IFN-I downstream signaling in cancer and myeloid cells may exert dichotomous functions.We analyzed the clinicopathologic correlation of cancer-specific IFN-I activation in 195 head and neck squamous cell carcinoma patients.
View Article and Find Full Text PDFAlthough sex dimorphism is increasingly recognized as an important factor in pain, female-specific pain signaling is not well studied. Here we report that administration of IL-23 produces mechanical pain (mechanical allodynia) in female but not male mice, and chemotherapy-induced mechanical pain is selectively impaired in female mice lacking Il23 or Il23r. IL-23-induced pain is promoted by estrogen but suppressed by androgen, suggesting an involvement of sex hormones.
View Article and Find Full Text PDFPatients with advanced stage cancers frequently suffer from severe pain as a result of bone metastasis and bone destruction, for which there is no efficacious treatment. Here, using multiple mouse models of bone cancer, we report that agonists of the immune regulator STING (stimulator of interferon genes) confer remarkable protection against cancer pain, bone destruction, and local tumor burden. Repeated systemic administration of STING agonists robustly attenuates bone cancer-induced pain and improves locomotor function.
View Article and Find Full Text PDFAggregation of RNA-binding proteins (RBPs) is a pathological hallmark of neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In these diseases, TDP-43 and FUS RBPs are depleted from the nuclear compartment, where they are normally localized, and found within cytoplasmic inclusions in degenerating regions of affected individuals' postmortem tissue. The mechanisms responsible for aggregation of these proteins has remained elusive, but recent studies suggest liquid-liquid phase separation (LLPS) might serve as a critical nucleation step in formation of pathological inclusions.
View Article and Find Full Text PDFMutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS.
View Article and Find Full Text PDFTraumatic brain injury (TBI) is a predisposing factor for many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although defects in nucleocytoplasmic transport (NCT) is reported ALS and other neurodegenerative diseases, whether defects in NCT occur in TBI remains unknown. We performed proteomic analysis on exposed to repeated TBI and identified resultant alterations in several novel molecular pathways.
View Article and Find Full Text PDFMany common cancers such as breast, prostate, and lung cancer metastasize to bones at advanced stages, producing severe pain and functional impairment. At present, the current pharmacotherapies available for bone cancer pain are insufficient to provide safe and efficacious pain relief. In this narrative review, we discuss the mechanisms used by cancer cells within the bone tumor microenvironment (TME) to drive bone cancer pain.
View Article and Find Full Text PDF