Adipose-derived stem cells (ASCs) possess significant therapeutic potential for tissue engineering and regeneration. This study investigates the endothelial differentiation and functional capacity of ASCs isolated from elderly patients. Isolation of ASCs from 53 patients (50-89 years) revealed that advanced age or comorbidity did not negatively impact stem cell harvest; rather, higher numbers were observed in older donors (>70 years) than in younger.
View Article and Find Full Text PDFBackground: Most research evaluating adipose-derived stem cells (ASC) uses tissue obtained from young, healthy patients undergoing plastic surgical procedures. Given the propensity of other adult stem cell lines to diminish with increasing patient age and co-morbidities, we assess the availability of ASC in elderly patients undergoing vascular surgical procedures, and evaluate their acquisition of endothelial cell (EC) traits to define their potential use in vascular tissue engineering.
Methods And Methods: Adipose tissue obtained by liposuction from patients undergoing vascular procedures (n = 50) was digested with collagenase and centrifuged to remove mature adipocytes.
Use of adult adipose-derived stem cells (ASCs) as endothelial cell substitutes in vascular tissue engineering is attractive because of their availability. However, when seeded onto decellularized vascular scaffolding and exposed to physiological fluid shear force, ASCs are physically separated from the graft lumen. Herein we have investigated methods of increasing initial ASC attachment using luminal precoats and a novel protocol for the gradual introduction of shear stress to optimize ASC retention.
View Article and Find Full Text PDFThe gold standard conduit for bypass of diseased small-diameter arteries remains autologous vascular tissue. In the absence of such tissue, patients are offered bypass with prosthetic material, with far less durable results. Vascular tissue engineering, the creation of a vascular conduit by seeding a tubular scaffold with various cells, may offer an alternative approach to this difficult situation.
View Article and Find Full Text PDFBackground: We are investigating decellularized vein allograft as a scaffold to engineer a non-synthetic, small-diameter vascular graft. This study examines the in vivo behavior of this scaffolding after implantation into the arterial circulation.
Materials And Methods: Canine animals underwent bilateral carotid interposition grafting using jugular vein implanted as either: 1) fresh autograft, 2) fresh allograft, or 3) decellularized allograft.