Publications by authors named "Christopher Delianides"

The production of HbS - an abnormal hemoglobin (Hb) - in sickle cell disease (SCD) results in poorly deformable red blood cells (RBCs) that are prone to microcapillary occlusion, causing tissue ischemia and organ damage. Novel treatments, including gene therapy, may reduce SCD morbidity, but methods to functionally evaluate RBCs remain limited. Previously, we presented the microfluidic impedance red cell assay (MIRCA) for rapid assessment of RBC deformability, employing electrical impedance-based readout to measure RBC occlusion of progressively narrowing micropillar openings.

View Article and Find Full Text PDF

This article presents a standalone, multichannel, miniaturized impedance analyzer (MIA) system for dielectric blood coagulometry measurements with a microfluidic sensor termed ClotChip. The system incorporates a front-end interface board for 4-channel impedance measurements at an excitation frequency of 1 MHz, an integrated resistive heater formed by a pair of printed-circuit board (PCB) traces to keep the blood sample near a physiologic temperature of 37 °C, a software-defined instrument module for signal generation and data acquisition, and a Raspberry Pi-based embedded computer with 7-inch touchscreen display for signal processing and user interface. When measuring fixed test impedances across all four channels, the MIA system exhibits an excellent agreement with a benchtop impedance analyzer, with rms errors of ≤0.

View Article and Find Full Text PDF

Objective: Peripheral nerve stimulation via multi-contact nerve cuff electrodes (NCEs) has proved effective in restoring function to individuals with lower-extremity paralysis. This study investigates clinical measures of nerve health over one year post-implantation of a composite flat-interface nerve electrode (C-FINE) on the tibial and peroneal nerves above the knee in a human volunteer. This represents the first deployment of a novel NCE on new neural targets in a uniquely challenging location prone to prolonged externally applied forces, making acute and chronic postoperative observation critical.

View Article and Find Full Text PDF