Genetic and environmental cues shape the evolution of the B cell Ig repertoire. Activation-induced cytidine deaminase (AID) is essential to generating Ig diversity through isotype class switching and somatic mutations, which then directly influence clonal selection. Impaired B cell development in AID-knockout mice has made it difficult to study Ig diversification in an aging repertoire.
View Article and Find Full Text PDFThe dysregulation of multiple signaling pathways, including those through endosomal Toll-like receptors (TLRs), Fc gamma receptors (FcγR), and antigen receptors in B cells (BCR), promote an autoinflammatory loop in systemic lupus erythematosus (SLE). Here, we used selective small-molecule inhibitors to assess the regulatory roles of interleukin-1 receptor (IL-1R)-associated kinase 4 (IRAK4) and Bruton's tyrosine kinase (BTK) in these pathways. The inhibition of IRAK4 repressed SLE immune complex- and TLR7-mediated activation of human plasmacytoid dendritic cells (pDCs).
View Article and Find Full Text PDFMultiple Sclerosis (MS) is a neurodegenerative autoimmune disorder caused by chronic inflammation and demyelination within the central nervous system (CNS). Clinical studies in MS patients have demonstrated efficacy with B cell targeted therapies such as anti-CD20. However, the exact role that B cells play in the disease process is unclear.
View Article and Find Full Text PDFEstradiol-17beta exerts profound neuroprotective actions following cerebral ischemia through multiple molecular mechanisms. To examine the putative anti-inflammatory mechanisms employed by estradiol during stroke, we explored the interactions between estradiol and inducible nitric oxide synthase (iNOS) in both wildtype and iNOS knockout (iNOSKO) female mice following permanent middle cerebral artery occlusion (MCAO). Female mice were ovariectomized and treated with estradiol.
View Article and Find Full Text PDFRecent studies describing the seemingly contradictory actions of estrogens in ischemic stroke injury have led us to reevaluate the circumstances under which estrogen therapy (ET) provides benefits against cerebral stroke and decipher its mechanisms of action. One prominent feature that follows stroke injury is massive central and peripheral inflammatory responses. Evidence now suggests that postischemic inflammatory responses strongly contribute to the extent of brain injury, and 17beta-estradiol (E(2)) may protect the ischemic brain by exerting antiinflammatory actions.
View Article and Find Full Text PDFNeurogenesis persists throughout life under normal and degenerative conditions. The adult subventricular zone (SVZ) generates neural stem cells capable of differentiating to neuroblasts and migrating to the site of injury in response to brain insults. In the present study, we investigated whether estradiol increases neurogenesis in the SVZ in an animal model of stroke to potentially promote the ability of the brain to undergo repair.
View Article and Find Full Text PDF