Pelvic fins are a characteristic structure of the vertebrate Bauplan. Yet, pelvic fin loss has occurred repeatedly across a wide diversity of other lineages of tetrapods and at least 48 times in teleost fishes. This pelvic finless condition is often associated with other morphological features such as body elongation, loss of additional structures, and bilateral asymmetry.
View Article and Find Full Text PDFThe genomic loci generating both adaptive and maladaptive variation could be surprisingly predictable in deeply homologous vertebrate structures like the lips. Variation in highly conserved vertebrate traits such as the jaws and teeth in organisms as evolutionarily disparate as teleost fishes and mammals is known to be structured by the same genes. Likewise, hypertrophied lips that have evolved repeatedly in Neotropical and African cichlid fish lineages could share unexpectedly similar genetic bases themselves and even provide surprising insight into the loci underlying human craniofacial anomalies.
View Article and Find Full Text PDFCichlid fishes have repeatedly evolved an astounding diversity of trophic morphologies. For example, hypertrophied lips have evolved multiple times in both African and Neotropical cichlids and could have even evolved convergently within single species assemblages such as African Lake Malawi cichlids. However, the extremely high diversification rate in Lake Malawi cichlids and extensive potential for hybridization has cast doubt on whether even genome-level phylogenetic reconstructions could delineate if these types of adaptations have evolved once or multiple times.
View Article and Find Full Text PDFCichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.
View Article and Find Full Text PDFAdaptive radiations could often occur in discrete stages. For instance, the species flock of ∼1000 species of Lake Malawi cichlid fishes might have only diverged once between rocky and sandy environments during the initial stage of their diversification. All further diversification within the rock-dwelling (mbuna) or sand-dwelling (utaka) cichlids would have occurred during a subsequent second stage of extensive trophic evolution that was followed by a third stage of sexual trait divergence.
View Article and Find Full Text PDFIntrogression might be exceptionally common during the evolution of narrowly endemic species. For instance, in the springs of the small and isolated Cuatro Ciénegas Valley, the mitogenome of the cichlid fish could be rapidly introgressing into populations of the trophically polymorphic . We used a combination of genetic and environmental data to examine the factors associated with this mitochondrial introgression.
View Article and Find Full Text PDFSexual dimorphism in ecologically relevant traits is ubiquitous in animals. However, other types of intraspecific phenotypic divergence, such as trophic polymorphism, are less common. Because linkage to sex should often lead to balancing selection, understanding the association between sex and phenotypic divergence could help explain why particular species show high morphological variability.
View Article and Find Full Text PDF