The immobilization of molecular species onto electrodes presents a direct route to modifying surface properties with molecular fidelity. Conventional methods include direct covalent attachment and physisorption of pyrene-appended molecular compounds to electrodes with aromatic character through π-π interactions. A recently reported hybrid approach extends the synthetic flexibility of the latter to a broader range of electrode materials.
View Article and Find Full Text PDFReplacing passive ion-exchange membranes, like Nafion, with membranes that use light to drive ion transport would allow membranes in photoelectrochemical technologies to serve in an active role. Toward this, we modified perfluorosulfonic acid ionomer membranes with organic pyrenol-based photoacid dyes to sensitize the membranes to visible light and initiate proton transport. Covalent modification of the membranes was achieved by reacting Nafion sulfonyl fluoride poly(perfluorosulfonyl fluoride) membranes with the photoacid 8-hydroxypyrene-1,3,6-tris(2-aminoethylsulfonamide).
View Article and Find Full Text PDF