Publications by authors named "Christopher D Salthouse"

Computer vision algorithms are often limited in their application by the large amount of data that must be processed. Mammalian vision systems mitigate this high bandwidth requirement by prioritizing certain regions of the visual field with neural circuits that select the most salient regions. This work introduces a novel and computationally efficient visual saliency algorithm for performing this neuromorphic attention-based data reduction.

View Article and Find Full Text PDF

Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes.

View Article and Find Full Text PDF

Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers.

View Article and Find Full Text PDF

Proteases play important roles in a variety of pathologies from heart disease to cancer. Quantitative measurement of protease activity is possible using a novel spectrally matched dual fluorophore probe and a small animal lifetime imager. The recorded fluorescence from an activatable fluorophore, one that changes its fluorescent amplitude after biological target interaction, is also influenced by other factors including imaging probe delivery and optical tissue absorption of excitation and emission light.

View Article and Find Full Text PDF

We show that a portable, inexpensive USB-powered time domain fluorimeter (TDF) and analysis scheme were developed for use in evaluating a new class of fluorescent lifetime multiplexed dyes. Fluorescent proteins, organic dyes, and quantum dots allow the labeling of more and more individual features within biological systems, but the wide absorption and emission spectra of these fluorophores limit the number of distinct processes which may be simultaneously imaged using spectral separation alone. By additionally separating reporters in a second dimension, fluorescent lifetime multiplexing provides a means to multiply the number of available imaging channels.

View Article and Find Full Text PDF