Transthiolation (also known as transthioesterification) reactions are used in the biosynthesis of acetyl coenzyme A, fatty acids and polyketides, and for post-translational modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. For the Ub pathway, E1 enzymes catalyse transthiolation from an E1~Ub thioester to an E2~Ub thioester. Transthiolation is also required for transfer of Ub from an E2~Ub thioester to HECT (homologous to E6AP C terminus) and RBR (ring-between-ring) E3 ligases to form E3~Ub thioesters.
View Article and Find Full Text PDFUbiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2023
The Ufd1/Npl4/Cdc48 complex is a universal protein segregase that plays key roles in eukaryotic cellular processes. Its functions orchestrating the clearance or removal of polyubiquitylated targets are established; however, prior studies suggest that the complex also targets substrates modified by the ubiquitin-like protein SUMO. Here, we show that interactions between Ufd1 and SUMO enhance unfolding of substrates modified by SUMO-polyubiquitin hybrid chains by the budding yeast Ufd1/Npl4/Cdc48 complex compared to substrates modified by polyubiquitin chains, a difference that is accentuated when the complex has a choice between these substrates.
View Article and Find Full Text PDFThe nuclear RNA exosome collaborates with the MTR4 helicase and RNA adaptor complexes to process, surveil, and degrade RNA. Here we outline methods to characterize RNA translocation and strand displacement by exosome-associated helicases and adaptor complexes using fluorescence-based strand displacement assays. The design and preparation of substrates suitable for analysis of helicase and decay activities of reconstituted MTR4-exosome complexes are described.
View Article and Find Full Text PDFRNA quality control relies on co-factors and adaptors to identify and prepare substrates for degradation by ribonucleases such as the 3' to 5' ribonucleolytic RNA exosome. Here, we determined cryogenic electron microscopy structures of human nuclear exosome targeting (NEXT) complexes bound to RNA that reveal mechanistic insights to substrate recognition and early steps that precede RNA handover to the exosome. The structures illuminate ZCCHC8 as a scaffold, mediating homodimerization while embracing the MTR4 helicase and flexibly anchoring RBM7 to the helicase core.
View Article and Find Full Text PDFMechanisms regulating meiotic progression in mammals are poorly understood. The -methyladenosine (mA) reader and 3' → 5' RNA helicase YTHDC2 switches cells from mitotic to meiotic gene expression programs and is essential for meiotic entry, but how this critical cell fate change is accomplished is unknown. Here, we provide insight into its mechanism and implicate YTHDC2 in having a broad role in gene regulation during multiple meiotic stages.
View Article and Find Full Text PDFRepair of DNA double-stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post-translational modification of repair factors. In budding yeast, single-stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA-RPA complexes are then SUMO-modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3' single-stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2.
View Article and Find Full Text PDFQuality control requires discrimination between functional and aberrant species to selectively target aberrant substrates for destruction. Nuclear RNA quality control in includes the TRAMP complex that marks RNA for decay via polyadenylation followed by helicase-dependent 3' to 5' degradation by the RNA exosome. Using reconstitution biochemistry, we show that polyadenylation and helicase activities of TRAMP cooperate with processive and distributive exoribonuclease activities of the nuclear RNA exosome to protect stable RNA from degradation while selectively targeting and degrading less stable RNA.
View Article and Find Full Text PDFTuberculosis remains a leading cause of death from a single bacterial infection worldwide. Efforts to develop new treatment options call for expansion into an unexplored target space to expand the drug pipeline and bypass resistance to current antibiotics. Lipoamide dehydrogenase is a metabolic and antioxidant enzyme critical for mycobacterial growth and survival in mice.
View Article and Find Full Text PDFCurr Opin Struct Biol
April 2021
The RNA exosome is a conserved complex of proteins that mediates 3'-5' RNA processing and decay. Its functions range from processing of non-coding RNAs such as ribosomal RNAs and decay of aberrant transcripts in the nucleus to cytoplasmic mRNA turnover and quality control. Ski2-like RNA helicases translocate substrates to exosome-associated ribonucleases and interact with the RNA exosome either directly or as part of multi-subunit helicase-containing complexes that identify and target RNA substrates for decay.
View Article and Find Full Text PDFThe exoribonuclease Rrp6p is critical for RNA decay in the nucleus. While Rrp6p acts on a large range of diverse substrates, it does not indiscriminately degrade all RNAs. How Rrp6p accomplishes this task is not understood.
View Article and Find Full Text PDFWe describe procedures to clone, express, and reconstitute an active human nuclear RNA exosome. Individual recombinant subunits are expressed from E. coli and successfully reconstituted into the nuclear complex, which contains the noncatalytic nine-subunit exosome core, the endoribonuclease and exoribonuclease DIS3, the distributive exoribonuclease EXOSC10, the cofactors C1D and MPP6, and the RNA helicase MTR4.
View Article and Find Full Text PDFIn this chapter, we describe methods to clone, express, purify, and reconstitute active S. pombe RNA exosomes. Reconstitution procedures are similar to methods that have been successful for the human and budding yeast exosome systems using protein subunits purified from the recombinant host E.
View Article and Find Full Text PDFMethods Mol Biol
December 2020
3' to 5' RNA degradation is primarily catalyzed by the RNA exosome subunits Dis3 and Rrp6 in the nucleus of Saccharomyces cerevisiae. These enzymes form a complex with the nine-subunit noncatalytic core (Exo9) to carry out their functions in vivo. Protein cofactors Rrp47, Mpp6, and the Mtr4 RNA helicase also assist the complex by modulating its activities and/or recruiting it to specific RNAs for processing or degradation.
View Article and Find Full Text PDFMethods Mol Biol
December 2020
The eukaryotic RNA exosome is a conserved and ubiquitous multiprotein complex that possesses multiple RNase activities and is involved in a diverse array of RNA degradation and processing events. While much of our current understanding of RNA exosome function has been elucidated using genetics and cell biology based studies of protein functions, in particular in S. cerevisiae, many important contributions in the field have been enabled through use of in vitro reconstituted complexes.
View Article and Find Full Text PDFThe RNA exosome is a 3' to 5' ribonuclease that plays a fundamental role in maturation, quality control, and turnover of nearly all types of RNA produced in eukaryotic cells. Here, we present an overview of the structure, composition, and functions of the RNA exosome, including various cytoplasmic and nuclear exosome co-factors and associated protein complexes. To view this SnapShot, open or download the PDF.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
August 2019
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a protein quality-control pathway in eukaryotes in which misfolded ER proteins are polyubiquitylated, extracted and ultimately degraded by the proteasome. This process involves ER membrane-embedded ubiquitin E2 and E3 enzymes, as well as a soluble E2 enzyme (Ubc7 in Saccharomyces cerevisiae and UBE2G2 in mammals). E2-binding regions (E2BRs) that recruit these soluble ERAD E2s to the ER have been identified in humans and S.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2019
The ubiquitin (Ub) and Ub-like (Ubl) protein-conjugation cascade is initiated by E1 enzymes that catalyze Ub/Ubl activation through C-terminal adenylation, thioester bond formation with an E1 catalytic cysteine, and thioester bond transfer to Ub/Ubl E2 conjugating enzymes. Each of these reactions is accompanied by conformational changes of the E1 domain that contains the catalytic cysteine (Cys domain). Open conformations of the Cys domain are associated with adenylation and thioester transfer to E2s, while a closed conformation is associated with pyrophosphate release and thioester bond formation.
View Article and Find Full Text PDFMost cellular functions rely on pathways that catalyze posttranslational modification of cellular proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins. Like other posttranslational modifications that require distinct writers, readers, and erasers during signaling, Ub/Ubl pathways employ distinct enzymes that catalyze Ub/Ubl attachment, Ub/Ubl recognition, and Ub/Ubl removal. Ubl protein conjugation typically relies on parallel but distinct enzymatic cascades catalyzed by an E1-activating enzyme, an E2 carrier protein, and an E3 ubiquitin-like protein ligase.
View Article and Find Full Text PDFSmall ubiquitin-like modifier (SUMO) is commonly used as a protein fusion domain to facilitate expression and purification of recombinant proteins, and a SUMO-specific protease is then used to remove SUMO from these proteins. Although this protease is highly specific, its limited solubility and stability hamper its utility as an reagent. Here, we report improved SUMO protease enzymes obtained via two approaches.
View Article and Find Full Text PDFThe ribonucleolytic RNA exosome interacts with RNA helicases to degrade RNA. To understand how the 3' to 5' Mtr4 helicase engages RNA and the nuclear exosome, we reconstituted 14-subunit Mtr4-containing RNA exosomes from Saccharomyces cerevisiae, Schizosaccharomyces pombe, and human and show that they unwind structured substrates to promote degradation. We loaded a human exosome with an optimized DNA-RNA chimera that stalls MTR4 during unwinding and determined its structure to an overall resolution of 3.
View Article and Find Full Text PDFThe nuclear exosome-targeting (NEXT) complex functions as an RNA exosome cofactor and is involved in surveillance and turnover of aberrant transcripts and noncoding RNAs. NEXT is a ternary complex composed of the RNA-binding protein RBM7, the scaffold zinc-knuckle protein ZCCHC8, and the helicase MTR4. While RNA interactions with RBM7 are known, it remains unclear how NEXT subunits collaborate to recognize and prepare substrates for degradation.
View Article and Find Full Text PDFMechanisms regulating mammalian meiotic progression are poorly understood. Here we identify mouse YTHDC2 as a critical component. A screen yielded a sterile mutant, '', caused by a missense mutation.
View Article and Find Full Text PDFNuclear RNA exosomes catalyze a range of RNA processing and decay activities that are coordinated in part by cofactors, including Mpp6, Rrp47, and the Mtr4 RNA helicase. Mpp6 interacts with the nine-subunit exosome core, while Rrp47 stabilizes the exoribonuclease Rrp6 and recruits Mtr4, but it is less clear if these cofactors work together. Using biochemistry with proteins, we show that Rrp47 and Mpp6 stimulate exosome-mediated RNA decay, albeit with unique dependencies on elements within the nuclear exosome.
View Article and Find Full Text PDF