Leptin, an adipocyte-derived hormone, acts directly on the brain to control food intake and energy expenditure. An important question is the identity of first-order neurons initiating leptin's anti-obesity effects. A widely held view is that most, if not all, of leptin's effects are mediated by neurons located in the arcuate nucleus of the hypothalamus.
View Article and Find Full Text PDFActivation of melanocortin-4-receptors (MC4Rs) reduces body fat stores by decreasing food intake and increasing energy expenditure. MC4Rs are expressed in multiple CNS sites, any number of which could mediate these effects. To identify the functionally relevant sites of MC4R expression, we generated a loxP-modified, null Mc4r allele (loxTB Mc4r) that can be reactivated by Cre-recombinase.
View Article and Find Full Text PDFLeptin is required for normal energy and glucose homeostasis. The hypothalamic arcuate nucleus (ARH) has been proposed as an important site of leptin action. To assess the physiological significance of leptin signaling in the ARH, we used mice homozygous for a FLPe-reactivatable, leptin receptor null allele (Lepr(neo/neo) mice).
View Article and Find Full Text PDF