Publications by authors named "Christopher D Hermann"

Craniosynostosis is the premature fusion of cranial sutures, which can result in progressive cranial deformations, increased intracranial pressure, and restricted brain growth. Most cases of craniosynostosis require surgical reconstruction of the cranial vault with the goal of increasing the intracranial volume and correcting the craniofacial deformities. However, patients often experience rapid post-operative bone regrowth, known as re-synostosis, which necessitates additional surgical intervention.

View Article and Find Full Text PDF

Surface microroughness plays an important role in determining osteoblast behavior on titanium. Previous studies have shown that osteoblast differentiation on microtextured titanium substrates is dependent on alpha-2 beta-1 (α2β1) integrin signaling. This study used focused ion beam milling and scanning electron microscopy, combined with three-dimensional image reconstruction, to investigate early interactions of individual cells with their substrate and the role of integrin α2β1 in determining cell shape.

View Article and Find Full Text PDF

Background: Craniosynostosis is the premature fusion of cranial sutures early in development. Mice are commonly used to study the mechanisms driving both normal and pathologic cranial suture development. Despite their frequency of use as a model, the time course of bone formation and mineralization during fusion of mouse posterior frontal suture is not well defined.

View Article and Find Full Text PDF

Craniosynostosis is the premature fusion of the cranial sutures early in development. If left untreated, craniosynostosis can lead to complications resulting from cranial deformities or increased intracranial pressure. The standard treatment involves calvarial reconstruction, which in many cases undergoes rapid re-synostosis.

View Article and Find Full Text PDF

The interrelationships among suture fusion, basicranial development, and subsequent resynostosis in syndromic craniosynostosis have yet to be examined. The objectives of this study were to determine the potential relationship between suture fusion and cranial base development in a model of syndromic craniosynostosis and to assess the effects of the syndrome on resynostosis following suturectomy. To do this, posterior frontal and coronal suture fusion, postnatal development of sphenooccipital synchondrosis, and resynostosis in Twist1(+/+) (WT) and Twist1(+/-) litter-matched mice (a model for Saethre-Chotzen syndrome) were quantified by evaluating μCT images with advanced image-processing algorithms.

View Article and Find Full Text PDF

One of the most difficult challenges in medical imaging is the accurate segmentation of mineralized tissues. This process is complicated when studying developmental or regenerative processes due to the changes in mineral density that these tissues undergo over time. To address these limitations an algorithm was developed to enable the use of computed tomography (CT) to study tissues of varying and heterogeneous mineralization.

View Article and Find Full Text PDF

This study used molecular beacon technology to examine substrate-dependent changes in integrin subunit expression in living cells. Molecular beacons are oligonucleotide probes that can be delivered into live cells to allow for real-time imaging of mRNA. They have a stem-loop hairpin structure with a fluorophore-quencher pair, which opens when bound to the target mRNA sequence, resulting in a fluorescent signal upon excitation.

View Article and Find Full Text PDF