Molecular self-assembly provides the means for creating large supramolecular structures, extending beyond the capability of standard chemical synthesis. To harness the power of self-assembly, it is necessary to understand its driving forces. A potent method is to exploit self-complementary hydrogen bonding, where a molecule interacts with its own copy by suitable positions of hydrogen-bond donor (D) and acceptor (A) groups.
View Article and Find Full Text PDFWe study the influence of an applied electric field on the structure and stability of some common bimolecular clusters that are found in the atmosphere. These clusters play an important role in new particle formation (NPF). For low values of the electric field (i.
View Article and Find Full Text PDFDimeric accretion products have been observed both in atmospheric aerosol particles and in the gas phase. With their low volatilities, they are key contributors to the formation of new aerosol particles, acting as seeds for more volatile organic vapors to partition onto. Many particle-phase accretion products have been identified as esters.
View Article and Find Full Text PDFIn this paper we study collisions between polyatomic radicals - an important process in fields ranging from biology to combustion. Energy transfer, formation of intermediate complexes and recombination reactions are treated, with applications to peroxy radicals in atmospheric chemistry. Multi-reference perturbation theory, supplemented by coupled-cluster calculations, describes the potential energy surfaces with high accuracy, including the interaction of singlet and triplet spin states during radical recombination.
View Article and Find Full Text PDFJ Chem Theory Comput
October 2021
We propose to analyze molecular dynamics (MD) output a supervised machine learning (ML) algorithm, the decision tree. The approach aims to identify the predominant geometric features which correlate with trajectories that transition between two arbitrarily defined states. The data-driven algorithm aims to identify these features without the bias of human "chemical intuition".
View Article and Find Full Text PDFThe deprotonation of formic acid is investigated using metadynamics in tandem with Born-Oppenheimer molecular dynamics simulations. We compare our findings for formic acid in pure water with previous studies before examining formic acid in aqueous solutions of lithium bromide. We carefully consider different definitions for the collective variable(s) used to drive the metadynamics, emphasizing that the variables used must include all of the possible reactive atoms in the system, in this case carboxylate oxygens and water hydrogens.
View Article and Find Full Text PDFWe present the results of ab initio molecular dynamics simulations of the solution-air interface of aqueous lithium bromide (LiBr). We find that, in agreement with the experimental data and previous simulation results with empirical polarizable force field models, Br anions prefer to accumulate just below the first molecular water layer near the interface, whereas Li cations remain deeply buried several molecular layers from the interface, even at very high concentration. The separation of ions has a profound effect on the average orientation of water molecules in the vicinity of the interface.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2018
We study the pressure-driven flow of aqueous NaCl in amorphous silica nanotubes using nonequilibrium molecular dynamics simulations featuring both polarizable and non-polarizable molecular models. Different pressures, electrolyte concentrations and pore sizes are examined. Our results indicate a flow that deviates considerably from the predictions of Poiseuille fluid mechanics.
View Article and Find Full Text PDFWe investigate, using non-equilibrium molecular dynamics simulations and theory, the response of molecular fluids confined in slit pores under the influence of a thermal gradient and/or an applied force. The applied force which has the same functional form as a gravitational force induces an inhomogeneous density in the confined fluid, which results in a net orientation of the molecules with respect to the direction of the force. The orientation is qualitatively similar to that induced by a thermal gradient.
View Article and Find Full Text PDFLocal electric field factors are calculated for liquid benzene by combining molecular dynamic simulations with a subsequent force-field model based on a combined charge-transfer and point-dipole interaction model for the local field factor. The local field factor is obtained as a linear response of the local field to an external electric field, and the response is calculated at frequencies through the first absorption maximum. It is found that the largest static local field factor is around 2.
View Article and Find Full Text PDFWe use density functional theory to investigate the impact that strong electric fields have on the structure and energetics of small lithium ion-water clusters, Li(+)·nH2O, with n = 4 or 6. We find that electric field strengths of ∼0.5 V/Å are sufficient to break the symmetry of the n = 4 tetrahedral energy minimum structure, which undergoes a transformation to an asymmetric cluster consisting of three water molecules bound to lithium and one additional molecule in the second solvation shell.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2014
We use molecular dynamics simulations in applied thermal gradients to study thermomolecular orientation (TMO) of size-asymmetric dipolar dumbbells with different molecular dipole moments. We find that the direction of the TMO is the same as in apolar dumbbells of the same size, i.e.
View Article and Find Full Text PDFWe study small clusters of water or methanol containing a single Ca(2+), Na(+), or Cl(-) ion with classical molecular dynamics simulations, using models that incorporate polarizability via the Drude oscillator framework. Evaporation and condensation of solvent from these clusters is examined in two systems, (1) for isolated clusters initially prepared at different temperatures and (2) those with a surrounding inert (Ar) gas of varying temperature. We examine these clusters over a range of sizes, from almost bare ions up to 40 solvent molecules.
View Article and Find Full Text PDFWe apply molecular dynamics (MD) simulations to study the final phase of electrospray ionization (ESI), where an ion loses all of its associated solvent molecules. By applying an electric field to a cluster of H(2)O molecules solvating an ion and including a surrounding gas of varying pressure, we demonstrate that collisions with the gas play a major role in removing this final layer of solvent. We make quantitative predictions of the critical velocity required for the cluster to start losing molecules via collisions with gas and propose that this should be important in real ESI experiments.
View Article and Find Full Text PDFApplying an electric field is a well-established experimental method to tune surface wettability. As accessible experimental length scales become shorter, the modification of interfacial properties of water using electric field must come to grips with novel effects existing at the nanoscale. We survey recent progress in understanding these effects on water interfacial tension and on water-mediated interactions using molecular simulations.
View Article and Find Full Text PDFWe examine the effect of nanoscale roughness on spreading and surface mobility of water nanodroplets. Using molecular dynamics, we consider model surfaces with sub-nanoscale asperities at varied surface coverage and with different distribution patterns. We test materials that are hydrophobic, and those that are hydrophilic in the absence of surface corrugations.
View Article and Find Full Text PDFWe use atomistic simulations to study the orientational dynamics of a nonpolar nanoparticle suspended in water and subject to an electric field. Because of the molecular-level effects we describe, the torque exerted on the nanoparticle exceeds continuum-electrostatics-based estimates by about a factor of 2. The reorientation time of a 16.
View Article and Find Full Text PDFWe studied monosodium glutamate (MSG) in aqueous solution using molecular dynamics simulations and compared the results with recent neutron diffraction with isotope contrast variation/empirical potential structure refinement (EPSR) data obtained on the same system (McLain et al. J. Phys.
View Article and Find Full Text PDFInterfacial polar molecules feature a strongly anisotropic response to applied electric field, favoring dipole orientations parallel to the interface. In water, in particular, this effect combines with generic orientational preferences induced by spatial asymmetry of water hydrogen bonding under confined geometry, which may give rise to a Janus interface. The two effects manifest themselves in considerable dependence of water polarization on both the field direction relative to the interface and the polarity (sign) of the field.
View Article and Find Full Text PDFWe study the behavior of ambient temperature water under the combined effects of nanoscale confinement and applied electric field. Using molecular simulations we analyze the thermodynamic causes of field-induced expansion at some conditions, and contraction at others. Repulsion among parallel water dipoles and mild weakening of interactions between partially aligned water molecules prove sufficient to destabilize the aqueous liquid phase in isobaric systems in which all water molecules are permanently exposed to a uniform electric field.
View Article and Find Full Text PDFWe manifest a significant influence of field direction and polarity on surface wetting, when the latter is tuned by application of an external electric field. Thermodynamics of field-induced filling of hydrocarbon-like nanopores with water is studied by open ensemble molecular simulation. Increased field strength consistently results in water-filling and electrostriction in hydrophobic nanopores.
View Article and Find Full Text PDFThe adsorption of CO2 gas on the MgO (100) crystal surface is investigated using grand canonical Monte Carlo simulations. This allows us to obtain adsorption isotherms that can be compared with experiment, as well as to explore the possible formation of monolayers of different densities. Our model calculations agree reasonably well with the available experimental results.
View Article and Find Full Text PDFWe consider a near-critical fluid of hard spheres with short-range interactions (approximately r(-6)) and obtain its constant-volume heat capacity C(V) by means of Monte Carlo calculations in the canonical ensemble. The question addressed is whether or not the heat capacities of the finite-size systems studied in simulations can provide a reliable indication of nonclassical criticality. For the model fluid considered here this is found to be the case.
View Article and Find Full Text PDF