Publications by authors named "Christopher D Cox"

PDE10A is an important regulator of striatal signaling that, when inhibited, can normalize dysfunctional activity. Given the involvement of dysfunctional striatal activity with schizophrenia, PDE10A inhibition represents a potentially novel means for its treatment. With the goal of developing PDE10A inhibitors, early optimization of a fragment hit through rational design led to a series of potent pyrimidine PDE10A inhibitors that required further improvements in physicochemical properties, off-target activities, and pharmacokinetics.

View Article and Find Full Text PDF

As the number of confirmed cases and resulting death toll of the COVID-19 pandemic continue to increase around the globe - especially with the emergence of new mutations of the SARS-CoV-2 virus in addition to the known alpha, beta, gamma, delta and omicron variants - tremendous efforts continue to be dedicated to the development of interventive therapeutics to mitigate infective symptoms or post-viral sequelae in individuals for which vaccines are not accessible, viable or effective in the prevention of illness. Many of these investigations aim to target the associated acute respiratory distress syndrome, or ARDS, which induces damage to lung epithelia and other physiologic systems and is associated with progression in severe cases. Recently, stem cell-based therapies have demonstrated preliminary efficacy against ARDS based on a number of preclinical and preliminary human safety studies, and based on promising outcomes are now being evaluated in phase II clinical trials for ARDS.

View Article and Find Full Text PDF

A novel series of histone deacetylase (HDAC) inhibitors lacking a zinc-binding moiety has been developed and described herein. HDAC isozyme profiling and kinetic studies indicate that these inhibitors display a selectivity preference for HDACs 1, 2, 3, 10, and 11 via a rapid equilibrium mechanism, and crystal structures with HDAC2 confirm that these inhibitors do not interact with the catalytic zinc. The compounds are nonmutagenic and devoid of electrophilic and mutagenic structural elements and exhibit off-target profiles that are promising for further optimization.

View Article and Find Full Text PDF

By employing a phenotypic screen, a set of compounds, exemplified by , were identified which potentiate the ability of histone deacetylase inhibitor vorinostat to reverse HIV latency. Proteome enrichment followed by quantitative mass spectrometric analysis employing a modified analogue of as affinity bait identified farnesyl transferase (FTase) as the primary interacting protein in cell lysates. This ligand-FTase binding interaction was confirmed via X-ray crystallography and temperature dependent fluorescence studies, despite lacking structural and binding similarity to known FTase inhibitors.

View Article and Find Full Text PDF

Attention deficit hyperactivity disorder (ADHD) is a chronic heritable developmental delay psychiatric disorder requiring chronic management, characterized by inattention, hyperactivity, hyperkinectivity and impulsivity. Subjective clinical evaluation still remains crucial in its diagnosis. Discussed are two key aspects in the "characterizing ADHD" and on the quest for objective "pathognomonic/endophenotypic diagnostic markers of ADHD".

View Article and Find Full Text PDF

Background: Targeted next-generation sequencing (NGS) is frequently obtained at the University of California, Los Angeles (UCLA) for clinical characterization of CNS tumors. In this study, we describe the diagnostic reliability of the Foundation Medicine (FM) targeted NGS platform and its ability to explore and identify tumor characteristics of prognostic significance in gliomas.

Methods: Neuro-oncology patients seen at UCLA who have received FM testing between August 2012 and March 2019 were included in this study, and all mutations from FM test reports were recorded.

View Article and Find Full Text PDF

Purpose: Both IDH1-mutated and wild-type gliomas abundantly display aberrant CpG island hypermethylation. However, the potential role of hypermethylation in promoting gliomas, especially the most aggressive form, glioblastoma (GBM), remains poorly understood.

Methods: We analyzed RRBS-generated methylation profiles for 11 IDH1 gliomas (including 7 GBMs), 24 IDH1 gliomas (including 6 GBMs), and 5 normal brain samples and employed TCGA GBM methylation profiles as a validation set.

View Article and Find Full Text PDF

Mutant isocitrate dehydrogenase (IDH) 1/2 converts α-ketoglutarate (α-KG) to D-2 hydroxyglutarate (D-2-HG), a putative oncometabolite that can inhibit α-KG-dependent enzymes, including ten-eleven translocation methylcytosine dioxygenase (TET) DNA demethylases. We recently established that miRNAs are components of the IDH1 mutant-associated glioma CpG island methylator phenotype (G-CIMP) and specifically identified MIR148A as a tumor-suppressive miRNA within G-CIMP. However, the precise mechanism by which mutant IDH induces hypermethylation of and other G-CIMP promoters remains to be elucidated.

View Article and Find Full Text PDF

We have identified a novel PDE2 inhibitor series using fragment-based screening. Pyrazolopyrimidine fragment 1, while possessing weak potency (K = 22.4 μM), exhibited good binding efficiencies (LBE = 0.

View Article and Find Full Text PDF

Herein, we present the identification of a novel class of pyrazolopyrimidine phosphodiesterase 10A (PDE10A) inhibitors. Beginning with a lead molecule (1) identified through a fragment-based drug discovery (FBDD) effort, lead optimization was enabled by rational design, X-ray crystallography, metabolic and off-target profiling, and fragment scaffold-hopping. We highlight the discovery of PyP-1, a potent, highly selective, and orally bioavailable pyrazolopyrimidine inhibitor of PDE10A.

View Article and Find Full Text PDF

Purpose: A positron emission tomography (PET) tracer for the enzyme phosphodiesterase 10A (PDE10A) is desirable to guide the discovery and development of PDE10A inhibitors as potential therapeutics. The preclinical characterization of the PDE10A PET tracer [(11)C]MK-8193 is described.

Procedures: In vitro binding studies with [(3)H]MK-8193 were conducted in rat, monkey, and human brain tissue.

View Article and Find Full Text PDF

Screening of a fragment library for PDE10A inhibitors identified a low molecular weight pyrimidine hit with PDE10A Ki of 8700 nM and LE of 0.59. Initial optimization by catalog followed by iterative parallel synthesis guided by X-ray cocrystal structures resulted in rapid potency improvements with minimal loss of ligand efficiency.

View Article and Find Full Text PDF

Since its discovery in 1998, the orexin system, composed of two G-protein coupled receptors, orexins 1 and 2, and two neuropeptide agonists, orexins A and B, has captured the attention of the scientific community as a potential therapeutic target for the treatment of obesity, anxiety, and sleep/wake disorders. Genetic evidence in rodents, dogs, and humans was revealed between 1999 and 2000, demonstrating a causal link between dysfunction or deletion of the orexin system and narcolepsy, a disorder characterized by hypersomnolence during normal wakefulness. These findings encouraged efforts to discover agonists to treat narcolepsy and, alternatively, antagonists to treat insomnia.

View Article and Find Full Text PDF

Phosphodiesterase 10A (PDE10A) inhibition has recently been identified as a potential mechanism to treat multiple symptoms that manifest in schizophrenia. In order to facilitate preclinical development and support key proof-of-concept clinical trials of novel PDE10A inhibitors, it is critical to discover positron emission tomography (PET) tracers that enable plasma concentration/PDE10A occupancy relationships to be established across species with structurally diverse PDE10A inhibitors. In this Letter, we describe how a high-throughput screening hit was optimized to provide [(11)C]MK-8193 (8j), a PET tracer that supports the determination of plasma concentration/PDE10A occupancy relationships for structurally diverse series of PDE10A inhibitors in both rat and rhesus monkey.

View Article and Find Full Text PDF

Highly selective orexin receptor antagonists (SORAs) of the orexin 2 receptor (OX2R) have become attractive targets both as potential therapeutics for insomnia as well as biological tools to help further elucidate the underlying pharmacology of the orexin signaling pathway. Herein, we describe the discovery of a novel piperidine ether 2-SORA class identified by systematic lead optimization beginning with filorexant, a dual orexin receptor antagonist (DORA) that recently completed Phase 2 clinical trials. Changes to the ether linkage and pendant heterocycle of filorexant were found to impart significant selectivity for OX2R, culminating in lead compound PE-6.

View Article and Find Full Text PDF

Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development.

View Article and Find Full Text PDF

Dual Orexin Receptor Antagonists (DORA) bind to both the Orexin 1 and 2 receptors. High resolution crystal structures of the Orexin 1 and 2 receptors, both class A GPCRs, were not available at the time of this study, and thus, ligand-based analyses were invoked and successfully applied to the design of DORAs. Computational analysis, ligand based superposition, unbound small-molecule X-ray crystal structures and NMR analysis were utilized to understand the conformational preferences of key DORAs and excellent agreement between these orthogonal approaches was seen in the majority of compounds examined.

View Article and Find Full Text PDF

The field of small-molecule orexin antagonist research has evolved rapidly in the last 15 years from the discovery of the orexin peptides to clinical proof-of-concept for the treatment of insomnia. Clinical programs have focused on the development of antagonists that reversibly block the action of endogenous peptides at both the orexin 1 and orexin 2 receptors (OX1 R and OX2 R), termed dual orexin receptor antagonists (DORAs), affording late-stage development candidates including Merck's suvorexant (new drug application filed 2012). Full characterization of the pharmacology associated with antagonism of either OX1 R or OX2 R alone has been hampered by the dearth of suitable subtype-selective, orally bioavailable ligands.

View Article and Find Full Text PDF

Phosphodiesterase 10A (PDE10A) is a novel therapeutic target for the treatment of schizophrenia. Here we report a novel role of PDE10A in the regulation of caloric intake and energy homeostasis. PDE10A-deficient mice are resistant to diet-induced obesity (DIO) and associated metabolic disturbances.

View Article and Find Full Text PDF

A series of [b]-fused 6,7-diethynylquinoxaline derivatives have been synthesized through an imine condensation strategy to examine the effect of extended benzannelation on the thermal reactivity of enediynes. Absorption and emission spectra of the highly conjugated quinoxalenediynes were red-shifted approximately 100-200 nm relative to those of 1,2-diethynylbenzene. Strong exotherms indicative of enediyne cyclization were observed by differential scanning calorimetry, while solution cyclizations in the presence of 1,4-cyclohexadiene confirmed C(1)-C(6) Bergman cyclization.

View Article and Find Full Text PDF

We describe the discovery of potent and orally bioavailable tetrahydropyridopyrimidine inhibitors of phosphodiesterase 10A by systematic optimization of a novel HTS lead. Lead compound THPP-1 exhibits nanomolar potencies, excellent pharmacokinetic properties, and a clean off-target profile. It displays in vivo target engagement as measured by increased rat striatal cGMP levels upon oral dosing.

View Article and Find Full Text PDF

Phosphodiesterase 10A (PDE10A) is a novel target for the treatment of schizophrenia that may address multiple symptomatic domains associated with this disorder. PDE10A is highly expressed in the brain and functions to metabolically inactivate the important second messengers cAMP and cGMP. Here we describe effects of a potent and orally bioavailable PDE10A inhibitor [2-(6-chloropyridin-3-yl)-4-(2-methoxyethoxy)-7,8-dihydropyrido[4,3-d]pyrimidin-6(5H)-yl](imidazo[1,5-a]pyridin-1-yl)methanone] (THPP-1) on striatal signaling pathways, in behavioral tests that predict antipsychotic potential, and assays that measure episodic-like memory in rat and executive function in rhesus monkey.

View Article and Find Full Text PDF

Insomnia is a common disorder that can be comorbid with other physical and psychological illnesses. Traditional management of insomnia relies on general central nervous system (CNS) suppression using GABA modulators. Many of these agents fail to meet patient needs with respect to sleep onset, maintenance, and next-day residual effects and have issues related to tolerance, memory disturbances, and balance.

View Article and Find Full Text PDF

Orexin (hypocretin) neuropeptides promote wakefulness by signaling through two G-protein coupled receptors, Orexin 1 Receptor (OX(1)R) and Orexin 2 Receptor (OX(2)R). MK-6096 is an orally bioavailable potent and selective reversible antagonist of OX(1)R and OX(2)R currently in clinical development for insomnia. In radioligand binding and functional cell based assays MK-6096 demonstrated potent binding and antagonism of both human OX(1)R and OX(2)R (<3 nM in binding, 11 nM in FLIPR), with no significant off-target activities against a panel of >170 receptors and enzymes.

View Article and Find Full Text PDF

Whole genome expression microarrays can be used to study gene expression in blood, which comes in part from leukocytes, immature platelets, and red blood cells. Since these cells are important in the pathogenesis of stroke, RNA provides an index of these cellular responses to stroke. Our studies in rats have shown specific gene expression changes 24  hours after ischemic stroke, hemorrhage, status epilepticus, hypoxia, hypoglycemia, global ischemia, and following brief focal ischemia that simulated transient ischemic attacks in humans.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: