We report the preparation of poly(ionic) polymer-wrapped single-walled carbon nanotube dispersions for chemiresistive methane (CH) sensors with improved humidity tolerance. Single-walled CNTs (SWCNTs) were noncovalently functionalized by poly(4-vinylpyridine) (P4VP) with varied amounts of a poly(ethylene glycol) (PEG) moiety bearing a Br and terminal azide group (Br-R). The quaternization of P4VP with Br-R was performed using continuous flow chemistry and Bayesian optimization-guided reaction selection.
View Article and Find Full Text PDFWe report a human-in-the-loop implementation of the multi-objective experimental design a Bayesian optimization platform (EDBO+) towards the optimization of butylpyridinium bromide synthesis under continuous flow conditions. The algorithm simultaneously optimized reaction yield and production rate (or space-time yield) and generated a well defined Pareto front. The versatility of EDBO+ was demonstrated by expanding the reaction space mid-campaign by increasing the upper temperature limit.
View Article and Find Full Text PDFSynthetic hemozoin crystals (β-hematin) are assembled with aluminium nanoparticles (nAl) to create a nanomaterial composite that is highly energetic and reactive. The results here demonstrate that hemozoin rapidly oxidizes the nAl fuel to release large amounts of energy (+12.5 ± 2.
View Article and Find Full Text PDFVertical arrays of single walled carbon nanotubes (VA-SWNTs) were grown using bi-metallic nanoparticle pro-catalysts. Iron oxide particles were doped with varying quantities of first row transition metals (Mn, Co, Ni, and Cu) for a comparative study of the growth of nanotubes. VA-CNT samples were verified using scanning electron microscopy, and characterized using resonance Raman spectroscopy.
View Article and Find Full Text PDFThe performance of aluminum nanomaterial based energetic formulations is dependent on the mass transport, diffusion distance, and stability of reactive components. Here we use a biologically inspired approach to direct the assembly of oxidizer loaded protein cages onto the surface of aluminum nanoparticles to improve reaction kinetics by reducing the diffusion distance between the reactants. Ferritin protein cages were loaded with ammonium perchlorate (AP) or iron oxide and assembled with nAl to create an oxidation-reduction based energetic reaction and the first demonstration of a nanoscale biobased thermite material.
View Article and Find Full Text PDFWith growing interest in the development of new composite systems for a variety of applications that require easily processable materials and adequate structural properties with high energy densities, we have pursued the chemical functionalization of oxide-passivated aluminum nanoparticles (nAl) using three acrylic monomers, 3-methacryloxypropyltrimethoxysilane (MPS), 2-carboxyethyl acrylate (CEA), and phosphonic acid 2-hydroxyethyl methacrylate ester (PAM), to provide chemical compatibility within various solvent and polymeric systems. Fourier transform infrared and X-ray photoelectron spectroscopy suggest that attachment of MPS and PAM monomers occurs through the formation of bonds directly to the passivated oxide surface upon reaction with surface hydroxyls, whereas CEA monomers interact through the formation of ionic carboxylate binding to aluminum atoms within the oxide. The coated particles demonstrate enhanced miscibility in common organic solvents and monomers; MPS and PAM coatings are additionally shown to inhibit oxidation of the aluminum particles when exposed to aqueous environments at room temperature, and PAM coatings are stable at even elevated temperatures.
View Article and Find Full Text PDFUltrasmall copper nanoparticles are produced by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPDA) reduction of aqueous Cu(2+) on a hydrophobically immobilized sodium dodecylbenzenesulfonate (SDBS) surfactant template in the presence of sodium citrate at room temperature. Single-walled carbon nanotubes (SWNTs) act as a scaffold controlling the size of the SDBS micelle, which in turn confines a limited number of copper ions near the nanotube surface. TMPDA reduction forms copper nanoparticles as confirmed by X-ray photoelectron spectroscopy and electron diffraction, whose size was determined by atomic force microscopy and transmission electron microscopy to be approximately 2 nm.
View Article and Find Full Text PDFThe reaction between fluorinated single-wall carbon nanotubes (F-SWNTs) and branched (M(w) = 600, 1800, 10000, and 25000 Da) or linear (M(w) = 25000 Da) polyethyleneimine (PEI) yields the covalent attachment of the polymer to the sidewalls of the nanotubes. The resulting PEI-functionalized SWNTs (PEI-SWNTs) were characterized by solid-state (13)C NMR, Raman spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy, atomic force microscopy, transmission electron microscopy, and thermal gravimetric analysis studies. As expected, the number of polymer molecules per SWNT is larger for low molecular weight PEI than for high molecular weight PEI.
View Article and Find Full Text PDFFilms of the molybdenum-iron nanocluster [H x PMo 12O 40 subsetH 4Mo 72Fe 30(O 2CMe) 15O 254(H2O) 68] (FeMoC) were generated on gold via the self-assembly technique using two divergent routes. The first route entails the self-assembly of unfunctionalized FeMoC onto a preprepared carboxyl-terminated SAM on gold. The second route involves the preparation of thiol-terminated functionalized FeMoC clusters, which are then allowed to self-assemble onto bare gold surfaces.
View Article and Find Full Text PDFCarbon nanotubes (CNTs) have been grown using Fe, Co, Ni, and Co/Fe spin-on-catalyst (SOC) systems, involving the metal salt dispersed with a spin-on-glass precursor. During initial growth runs (CH4/H2/900 degrees C), the CNT yield followed the order Co-SOC > Fe-SOC >> Ni-SOC. The Fe catalysts produced the longest nanotubes at the expense of a larger average CNT diameter and broader diameter distribution than the Co-SOC system.
View Article and Find Full Text PDFThe synthetic conditions for the isolation of the iron-molybdenum nanocluster FeMoC [HxPMo12O40 [subset]H4Mo72Fe30(O2CMe)15O254(H2O)98], along with its application as a catalyst precursor for VLS growth of SWNTs have been studied. As-prepared FeMoC is contaminated with the Keplerate cage [H4Mo72Fe30(O2CMe)15O254(H2O)98] without the Keggin [HxPMo12O40]n- template, however, isolation of pure FeMoC may be accomplished by Soxhlet extraction with EtOH. The resulting EtOH solvate is consistent with the replacement of the water ligands coordinated to Fe being substituted by EtOH.
View Article and Find Full Text PDF