Publications by authors named "Christopher Contag"

Correction of diseases may be achieved by delivery of genes to stem cells and developing organ systems. Our previous studies demonstrated life-long expression after in utero injection of adeno-associated virus (AAV) serotype 2 in mice. In the present studies, we compared levels of expression using the elongation factor 1alpha (EF1alpha) or the CMV promoter in AAV2 and AAV5 linked to luciferase via intraperitoneal injection in day 15 fetuses in utero.

View Article and Find Full Text PDF

Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of numerous xenobiotics in the human liver. We have examined the activation of the human CYP3A4 promoter in mouse liver by using in vivo bioluminescent imaging (BLI). Transcription of the CYP3A4 promoter occurs as a result of a ligand binding to a nuclear orphan receptor, pregnane X receptor (PXR), followed by dimerization with another nuclear receptor, retinoid X receptor (RXR).

View Article and Find Full Text PDF

We report on the use of optical techniques to monitor and treat Pseudomonas aeruginosa wound infections in mice. Bioluminescent bacteria transduced with a plasmid containing a bacterial lux gene operon allow the infection in excisional mouse wounds to be imaged by use of a sensitive charge-coupled device camera. Photodynamic therapy (PDT) targeted bacteria, by use of a polycationic photosensitizer conjugate, which is designed to penetrate the gram-negative cell wall and was topically applied to the wound and was followed by red-light illumination.

View Article and Find Full Text PDF

We describe a novel confocal microscope that uses separate low-numerical-aperture objectives with the illumination and collection axes crossed at angle theta from the midline. This architecture collects images in scattering media with high transverse and axial resolution, long working distance, large field of view, and reduced noise from scattered light. We measured transverse and axial (FWHM) resolution of 1.

View Article and Find Full Text PDF

Cell migration is a key aspect of the development of the immune system and mediating an immune response. There is extensive and continual redistribution of cells to different anatomic sites throughout the body. These trafficking patterns control immune function, tissue regeneration, and host responses to insult.

View Article and Find Full Text PDF

Background: Animal models are important tools to investigate the pathogenesis and develop treatment strategies for bone metastases in humans. However, there are few spontaneous models of bone metastasis despite the fact that rodents (rats and mice) and other animals (dogs and cats) often spontaneously develop cancer. Therefore, most experimental models of bone metastasis in rodents require injection or implantation of neoplastic cells into orthotopic locations, bones, or the left ventricle of the heart.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is an autoimmune arthritis, for which treatment options remain limited. This study investigated the potential role of adoptive cellular gene therapy as a novel means for treating the RA animal model collagen-induced arthritis (CIA). Adoptive transfer of antigen-specific T-cell hybridomas retrovirally transduced to express IL-4 1 day before booster immunization significantly reduced the number of inflamed joints.

View Article and Find Full Text PDF

Heme oxygenase (HO), a key catabolic enzyme in the conversion of heme to bilirubin, is an ideal target for reducing bilirubin production and preventing pathological jaundice in newborn infants. Metalloporphyrins (Mps) have been well characterized as competitive inhibitors of HO and have been evaluated as potential chemopreventive agents for neonatal jaundice. However, in addition to reducing HO activity, many Mps have been shown to increase HO-1 transcription, which would likely reduce their potential therapeutic utility.

View Article and Find Full Text PDF

Cancer therapeutics have achieved success in the treatment of a variety of malignancies, however, relapse of disease from small numbers of persistent tumor cells remains a major obstacle. Advancement of treatment regimens that effectively control minimal residual disease and prevent relapse would be greatly accelerated if sensitive and noninvasive assays were used to quantitatively assess tumor burden in animal models of minimal residual disease that are predictive of the human response. In vivo bioluminescence imaging (BLI) is an assay for the detection of small numbers of cells noninvasively and enables the quantification of tumor growth within internal organs.

View Article and Find Full Text PDF

Myelotoxic treatments for oncologic diseases are often complicated by neutropenia, which renders patients susceptible to potentially lethal infections. In these studies of murine hematopoietic stem cell transplantation (HSCT), cotransplantation of lineage-restricted progenitors known as common myeloid progenitors (CMP) and granulocyte-monocyte progenitors (GMP) protects against death following otherwise lethal challenge with either of 2 pathogens associated with neutropenia: Aspergillus fumigatus and Pseudomonas aeruginosa. Cotransplantation of CMP/GMP resulted in a significant and rapid increase in the absolute number of myeloid cells in the spleen, most of which were derived from the donor CMP/GMP.

View Article and Find Full Text PDF

HER2 is an attractive immunotherapeutic target for neoplastic disease because this cell surface molecule is overexpressed on a large fraction of malignant tumor cells. To directly assess therapeutic responses to targeted therapy by noninvasive in vivo imaging in small animals, human HER2-expressing ovarian carcinoma cells were genetically modified with a firefly luciferase gene, and light emission was used for visualization of tumor growth and response to therapy. This imaging approach was able to demonstrate in real-time tumor regression in a HER2 xenograft mouse model by adoptive transfer of in vitro induced and expanded cytotoxic CD8+ natural killer T (NKT) cells retargeted with a humanized bispecific antibody F(ab')(2)HER2xCD3.

View Article and Find Full Text PDF

Among the newly described tools that enable analyses of cellular and molecular events in living animals, in vivo bioluminescence imaging (BLI) offers important opportunities for investigating a wide variety of disease processes. BLI utilizes luciferase as an internal biological light source that can be genetically programmed to noninvasively "report" the presence or activation of specific biological events. Applications of BLI have included the use of luciferase to demonstrate expression of cell- and tissue-specific promoters, label cell populations, guide detection by other imaging modalities, and detect protein-protein interaction.

View Article and Find Full Text PDF

To advance our understanding of biological processes as they occur in living animals, imaging strategies have been developed and refined that reveal cellular and molecular features of biology and disease in real time. One rapid and accessible technology for in vivo analysis employs internal biological sources of light emitted from luminescent enzymes, luciferases, to label genes and cells. Combining this reporter system with the new generation of charge coupled device (CCD) cameras that detect the light transmitted through the animal's tissues has opened the door to sensitive in vivo measurements of mammalian gene expression in living animals.

View Article and Find Full Text PDF

Bone morphogenetic protein 4 (Bmp4) plays a significant role in development. Using transgenic approaches, we studied the mechanisms controlling Bmp4 expression during primordial and mature tissue development, as well as in epithelium- and mesenchyme-derived components with hair follicles as a model. In this report, we demonstrated that the promoter region between the -0.

View Article and Find Full Text PDF

The worldwide rise in antibiotic resistance necessitates the development of novel antimicrobial strategies. In this study we report on the first use of a photochemical approach to destroy bacteria infecting a wound in an animal model. Following topical application, a targeted polycationic photosensitizer conjugate between poly-L-lysine and chlorin(e6) penetrated the gram (-) outer bacterial membrane, and subsequent activation with 660 nm laser light rapidly killed Escherichia coli infecting excisional wounds in mice.

View Article and Find Full Text PDF

Lactase gene transcription is spatially restricted to the proximal and middle small intestine of the developing mouse. To identify regions of the lactase gene involved in mediating the spatiotemporal expression pattern, transgenic mice harboring 0.8-, 1.

View Article and Find Full Text PDF