Freezing of gait (FOG) is a disabling yet poorly understood paroxysmal gait disorder affecting the vast majority of patients with Parkinson's disease (PD) as they reach advanced stages of the disorder. Falling is one of the most disabling consequences of a FOG episode; it often results in injury and a future fear of falling, leading to diminished social engagement, a reduction in general fitness, loss of independence, and degradation of overall quality of life. Currently, there is no robust or reliable treatment against FOG in PD.
View Article and Find Full Text PDFInteractions between the developing heart and the embryonic immune system are essential for proper cardiac development and maintaining homeostasis, with disruptions linked to various diseases. While human pluripotent stem cell (hPSC)-derived organoids are valuable models for studying human organ function, they often lack critical tissue-resident immune cells. Here, we introduce an advanced human heart assembloid model, termed hHMA (human heart-macrophage assembloid), which fully integrates autologous cardiac tissue- resident macrophages (MPs) with pre-existing human heart organoids (hHOs).
View Article and Find Full Text PDFCancer stem cells (CSCs) drive tumorigenesis, are responsible for metastasis, and resist conventional therapies thus posing significant treatment challenges. CSCs reside in hypoxic tumor regions and therefore, effective therapies must target CSCs within this specific microenvironment. CSCs are characterized by limited distinguishable features, however, surface displayed phosphatidylserine (PS) appears to be characteristic of stem cells and offers a potential target.
View Article and Find Full Text PDFCirculating monocytes infiltrate and coordinate immune responses in tissues surrounding implanted biomaterials and in other inflamed tissues. Here we show that immunometabolic cues in the biomaterial microenvironment govern the trafficking of immune cells, including neutrophils and monocytes, in a manner dependent on the chemokine receptor 2 (CCR2) and the C-X3-C motif chemokine receptor 1 (CX3CR1). This affects the composition and activation states of macrophage and dendritic cell populations, ultimately orchestrating the relative composition of pro-inflammatory, transitory and anti-inflammatory CCR2, CX3CR1 and CCR2 CX3CR1 immune cell populations.
View Article and Find Full Text PDFComposite biomaterials comprising polylactide (PLA) and hydroxyapatite (HA) are applied in bone, cartilage and dental regenerative medicine, where HA confers osteoconductive properties. However, after surgical implantation, adverse immune responses to these composites can occur, which have been attributed to size and morphology of HA particles. Approaches to effectively modulate these adverse immune responses have not been described.
View Article and Find Full Text PDFThe incidence of breast cancer remains high worldwide and is associated with a significant risk of metastasis to the brain that can be fatal; this is due, in part, to the inability of therapeutics to cross the blood-brain barrier (BBB). Extracellular vesicles (EVs) have been found to cross the BBB and further have been used to deliver drugs to tumors. EVs from different cell types appear to have different patterns of accumulation and retention as well as the efficiency of bioactive cargo delivery to recipient cells in the body.
View Article and Find Full Text PDFHuman breath contains biomarkers (odorants) that can be targeted for early disease detection. It is well known that honeybees have a keen sense of smell and can detect a wide variety of odors at low concentrations. Here, we employ honeybee olfactory neuronal circuitry to classify human lung cancer volatile biomarkers at different concentrations and their mixtures at concentration ranges relevant to biomarkers in human breath from parts-per-billion to parts-per-trillion.
View Article and Find Full Text PDFColorectal cancer (CRC) is the third leading cause of cancer death in the U.S., and early detection and diagnosis are essential for effective treatment.
View Article and Find Full Text PDFThe molecular basis of reduced autofluorescence in oral squamous cell carcinoma (OSCC) cells relative to normal cells has been speculated to be due to lower levels of free flavin adenine dinucleotide (FAD). This speculation, along with differences in the intrinsic optical properties of extracellular collagen, lies at the foundation of the design of currently-used clinical optical detection devices. Here, we report that free FAD levels may not account for differences in autofluorescence of OSCC cells, but that the differences relate to FAD as a co-factor for flavination.
View Article and Find Full Text PDFPolylactide (PLA) is the most widely utilized biopolymer in medicine. However, chronic inflammation and excessive fibrosis resulting from its degradation remain significant obstacles to extended clinical use. Immune cell activation has been correlated to the acidity of breakdown products, yet methods to neutralize the pH have not significantly reduced adverse responses.
View Article and Find Full Text PDFCaused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), coronavirus disease 2019 (COVID-19) has shown extensive lung manifestations in vulnerable individuals, putting lung imaging and monitoring at the forefront of early detection and treatment. Magnetic particle imaging (MPI) is an imaging modality, which can bring excellent contrast, sensitivity, and signal-to-noise ratios to lung imaging for the development of new theranostic approaches for respiratory diseases. Advances in MPI tracers would offer additional improvements and increase the potential for clinical translation of MPI.
View Article and Find Full Text PDFPhosphatidylserine (PS) is a negatively charged phospholipid normally localized to the inner leaflet of the plasma membrane of cells but is externalized onto the cell surface during apoptosis as well as in malignant and infected cells. Consequently, PS may comprise an important molecular target in diagnostics, imaging, and targeted delivery of therapeutic agents. While an array of PS-binding molecules exist, their utility has been limited by their inability to internalize diagnostic or therapeutic payloads.
View Article and Find Full Text PDFPrimary total joint arthroplasties (TJAs) are widely and successfully applied reconstructive procedures to treat end-stage arthritis. Nearly 50 % of TJAs are now performed in young patients, posing a new challenge: performing TJAs which last a lifetime. The urgency is justified because subsequent TJAs are costlier and fraught with higher complication rates, not to mention the toll taken on patients and their families.
View Article and Find Full Text PDFBioadhesives with antimicrobial properties enable easier and safer treatment of wounds as compared to the traditional methods such as suturing and stapling. Composed of natural or synthetic polymers, these bioadhesives seal wounds and facilitate healing while preventing infections through the activity of locally released antimicrobial drugs, nanocomponents, or inherently antimicrobial polers. Although many different materials and strategies are employed to develop antimicrobial bioadhesives, the design of these biomaterials necessitates a prudent approach as achieving all the required properties including optimal adhesive and cohesive properties, biocompatibility, and antimicrobial activity can be challenging.
View Article and Find Full Text PDFBackground: Continuous cross talk between MSCs and macrophages is integral to acute and chronic inflammation resulting from contaminated polyethylene particles (cPE); however, the effect of this inflammatory microenvironment on mitochondrial metabolism has not been fully elucidated. We hypothesized that (a) exposure to cPE leads to impaired mitochondrial metabolism and glycolytic reprogramming and (b) macrophages play a key role in this pathway.
Methods: We cultured MSCs with/without uncommitted M0 macrophages, with/without cPE in 3-dimensional gelatin methacrylate (3D GelMA) constructs/scaffolds.
Poly(lactic--glycolic acid) (PLGA) nanoparticles (NPs) are commonly used for drug delivery because of their favored biocompatibility and suitability for sustained and controlled drug release. To prolong NP circulation time, enable target-specific drug delivery and overcome physiological barriers, NPs camouflaged in cell membranes have been developed and evaluated to improve drug delivery. Here, we discuss recent advances in cell membrane-coated PLGA NPs, their preparation methods, and their application to cancer therapy, management of inflammation, treatment of cardiovascular disease and control of infection.
View Article and Find Full Text PDFMonitoring changes in edema-associated intracranial pressure that complicates trauma or surgery would lead to improved outcomes. Implantable pressure sensors have been explored, but these sensors require post-surgical removal, leading to the risk of injury to brain tissue. The use of biodegradable implantable sensors would help to eliminate this risk.
View Article and Find Full Text PDFRepeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro.
View Article and Find Full Text PDFThere is overwhelming evidence that presence of cancer alters cellular metabolic processes, and these changes are manifested in emitted volatile organic compound (VOC) compositions of cancer cells. Here, we take a novel forward engineering approach by developing an insect olfactory neural circuit-based VOC sensor for cancer detection. We obtained oral cancer cell culture VOC-evoked extracellular neural responses from in vivo insect (locust) antennal lobe neurons.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), and resulting images can be used to guide magnetothermal heating. Alternating magnetic fields (AMF) cause local temperature increases in regions with SPIONs, and we investigated the ability of magnetic hyperthermia to regulate temperature-sensitive repressors (TSRs) of bacterial transcription. The TSR, TlpA39, was derived from a Gram-negative bacterium and used here for thermal control of reporter gene expression in Gram-positive, heating of with TlpA39 controlling bacterial luciferase expression resulted in a 14.
View Article and Find Full Text PDFThe use of imaging to detect and monitor the movement and accumulation of cells in living subjects can provide significant insights that can improve our understanding of metastasis and guide therapeutic development. For cell tracking using Magnetic Resonance Imaging (MRI), cells are labeled with iron oxides and the effects of the iron on water provides contrast. However, due to low specificity and difficulties in quantification with MRI, other modalities and approaches need to be developed.
View Article and Find Full Text PDF