Psoriasis vulgaris remains a common inflammatory skin disease globally. The imbalance between Th17 and Treg cells plays an integral role in the pathogenesis of psoriasis vulgaris, but the underlying mechanisms remain obscure. The role of AIM2 in Treg cell function in psoriasis is unclear.
View Article and Find Full Text PDFMolecular imaging with analyte-responsive probes offers a powerful chemical approach to studying biological processes. Many reagents for bioimaging employ a fluorescence readout, but the relatively broad emission bands of this modality and the need to alter the chemical structure of the fluorophore for different signal colors can potentially limit multiplex imaging. Here, we report a generalizable approach to multiplex analyte imaging by leveraging the comparably narrow spectral signatures of stimulated Raman scattering (SRS) in activity-based sensing (ABS) mode.
View Article and Find Full Text PDFObjective: To evaluate the current usage of reproducible primary endpoints and tools for assessing treatment response for clinical trials for systemic lupus erythematosus (SLE), and emphasize the need for developing standardized, reproducible endpoints in this context.
Method: A comprehensive review of Phase II and III SLE biologic trials from the past 15 years was conducted using PubMed and ClinicalTrials.gov.
Transition metals play essential roles in biology, where these nutrients regulate protein activity as active site cofactors or via metalloallostery. In contrast, dysregulation of transition metal homeostasis can lead to unique metal-dependent signaling pathways connected to aging and disease, such as cuproptosis and ferroptosis for copper- and iron-dependent cell death or cuproplasia and ferroplasia for copper- and iron-dependent cell growth and proliferation, respectively. New methods that enable detection of bioavailable transition metal pools with both metal and oxidation state specificity can help decipher their contributions to health and disease.
View Article and Find Full Text PDFUnraveling vulnerabilities in chronic lymphocytic leukemia (CLL) represents a key approach to understand molecular basis for its indolence and a path toward developing tailored therapeutic approaches. In this study, we found that CLL cells are particularly sensitive to the inhibitory action of abundant serum protein, apolipoprotein E (ApoE). Physiological concentrations of ApoE affect CLL cell viability and inhibit CD40-driven proliferation.
View Article and Find Full Text PDFB-cell receptor-associated protein 31 (BCAP31) has protective effects against alveolar epithelial type II cells (AECII) damage by inhibiting mitochondrial injury in acute lung injury (ALI) induced by lipopolysaccharide (LPS), whereas the precise mechanism is still unclear. It is known that PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy can remove damaged mitochondria selectively, which may be involved in BCAP31 protection against mitochondrial injury. In the current study, ALI mice models were established by using surfactant protein C (Sftpc)-BCAP31 transgenic mice (BCAP31 mice) and AECII-specific BCAP31 knockout mice (BCAP31 mice) treated with LPS.
View Article and Find Full Text PDFCopper plays a key role in host-pathogen interaction. We find that during Leishmania major infection, the parasite-harboring macrophage regulates its copper homeostasis pathway in a way to facilitate copper-mediated neutralization of the pathogen. Copper-ATPase ATP7A transports copper to amastigote-harboring phagolysosomes to induce stress on parasites.
View Article and Find Full Text PDFThe primary immunodeficiency diseases are often accompanied by autoimmunity, autoinflammatory, or aberrant lymphoproliferation. The paradoxical nature of this association can be explained by the multiple cells and molecules involved in immune networks that interact with each other in synergistic, redundant, antagonistic, and parallel arrangements. Because progressively more immunodeficiencies are found to have a genetic etiology, in many cases, a monogenic pathology, an understanding of why immunodeficiency is really an immune dysfunction becomes evident.
View Article and Find Full Text PDFCuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Organoboron compounds are widely utilized in organic synthesis for their diverse reactivity, modular preparation, and stability compared to other classes of organometallic reagents. While organoboron species are commonly employed as nucleophiles in cross-coupling reactions, their potential as racemic building blocks in enantioconvergent transformations remains largely untapped. Herein, we demonstrate the direct utilization of alkylboronic pinacol esters in intermolecular enantioconvergent transformations.
View Article and Find Full Text PDFIron is an essential element for life owing to its ability to participate in a diverse array of oxidation-reduction reactions. However, misregulation of iron-dependent redox cycling can also produce oxidative stress, contributing to cell growth, proliferation, and death pathways underlying aging, cancer, neurodegeneration, and metabolic diseases. Fluorescent probes that selectively monitor loosely bound Fe(II) ions, termed the labile iron pool, are potentially powerful tools for studies of this metal nutrient; however, the dynamic spatiotemporal nature and potent fluorescence quenching capacity of these bioavailable metal stores pose challenges for their detection.
View Article and Find Full Text PDFGlioblastoma is the most common and lethal central nervous system malignancy with a median survival after progression of only 6-9 months. Major biochemical mechanisms implicated in glioblastoma recurrence include aberrant molecular pathways, a recurrence-inducing tumor microenvironment, and epigenetic modifications. Contemporary standard-of-care (surgery, radiation, chemotherapy, and tumor treating fields) helps to control the primary tumor but rarely prevents relapse.
View Article and Find Full Text PDFAngela Casini (Technical University of Munich, Germany), Hui Chao (Sun Yat-Sen University, China), Hongzhe Sun (University of Hong Kong, China), and Christopher J. Chang (University of California, Berkeley, United States) introduce the themed collection on 'Chemical biology of metals'.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2024
Copper plays critical roles as a metal active site cofactor and metalloallosteric signal for enzymes involved in cell proliferation and metabolism, making it an attractive target for cancer therapy. In this study, we investigated the efficacy of polydopamine nanoparticles (PDA NPs), classically applied for metal removal from water, as a therapeutic strategy for depleting intracellular labile copper pools in triple-negative breast cancer models through the metal-chelating groups present on the PDA surface. By using the activity-based sensing probe FCP-1, we could track the PDA-induced labile copper depletion while leaving total copper levels unchanged and link it to the selective MDA-MB-231 cell death.
View Article and Find Full Text PDFFormaldehyde (FA) is both a highly reactive environmental genotoxin and an endogenously produced metabolite that functions as a signaling molecule and one-carbon (1C) store to regulate 1C metabolism and epigenetics in the cell. Owing to its signal-stress duality, cells have evolved multiple clearance mechanisms to maintain FA homeostasis, acting to avoid the established genotoxicity of FA while also redirecting FA-derived carbon units into the biosynthesis of essential nucleobases and amino acids. The highly compartmentalized nature of FA exposure, production, and regulation motivates the development of chemical tools that enable monitoring of transient FA fluxes with subcellular resolution.
View Article and Find Full Text PDFCopper (Cu) is an essential trace element required for respiration, neurotransmitter synthesis, oxidative stress response, and transcriptional regulation. Imbalance in Cu homeostasis can lead to several pathological conditions, affecting neuronal, cognitive, and muscular development. Mechanistically, Cu and Cu-binding proteins (Cu-BPs) have an important but underappreciated role in transcription regulation in mammalian cells.
View Article and Find Full Text PDFIn the era of big data in human genetics, large-scale biobanks aggregating genetic data from diverse populations have emerged as important for advancing our understanding of human health and disease. However, the computational and storage demands of whole genome sequencing (WGS) studies pose significant challenges, especially for researchers from underfunded institutions or developing countries, creating a disparity in research capabilities. We introduce new approaches that significantly enhance computational efficiency and reduce data storage requirements for WGS studies.
View Article and Find Full Text PDFAlthough transition metals constitute less than 0.1% of the total mass within a human body, they have a substantial impact on fundamental biological processes across all kingdoms of life. Indeed, these nutrients play crucial roles in the physiological functions of enzymes, with the redox properties of many of these metals being essential to their activity.
View Article and Find Full Text PDFLupus erythematosus (LE) is a heterogeneous, antibody-mediated autoimmune disease. Isolate discoid LE (IDLE) and systematic LE (SLE) are traditionally regarded as the two ends of the spectrum, ranging from skin-limited damage to life-threatening multi-organ involvement. Both belong to LE, but IDLE and SLE differ in appearance of skin lesions, autoantibody panels, pathological changes, treatments, and immunopathogenesis.
View Article and Find Full Text PDFFormaldehyde is commonly thought of as an environmental toxin or laboratory fixation reagent, but there is a growing appreciation for its broader physiological contributions as a naturally generated one-carbon metabolite across all kingdoms of life. In this In Focus article, we summarize emerging advances in the field that show how formaldehyde plays diverse roles as a one-carbon signal in DNA damage, one-carbon metabolism, and epigenetic regulation.
View Article and Find Full Text PDFFormate is a major reactive carbon species in one-carbon metabolism, where it serves as an endogenous precursor for amino acid and nucleic acid biosynthesis and a cellular source of NAD(P)H. On the other hand, aberrant elevations in cellular formate are connected to progression of serious diseases, including cancer and Alzheimer's disease. Traditional methods for formate detection in biological environments often rely on sample destruction or extensive processing, resulting in a loss of spatiotemporal information.
View Article and Find Full Text PDFMethods for selective covalent modification of amino acids on proteins can enable a diverse array of applications, spanning probes and modulators of protein function to proteomics. Owing to their high nucleophilicity, cysteine and lysine residues are the most common points of attachment for protein bioconjugation chemistry through acid-base reactivity. Here we report a redox-based strategy for bioconjugation of tryptophan, the rarest amino acid, using oxaziridine reagents that mimic oxidative cyclization reactions in indole-based alkaloid biosynthetic pathways to achieve highly efficient and specific tryptophan labelling.
View Article and Find Full Text PDFDocetaxel has been the standard first-line chemotherapy for lethal metastatic prostate cancer (mPCa) since 2004, but resistance to docetaxel treatment is common. The molecular mechanisms of docetaxel resistance remain largely unknown and could be amenable to interventions that mitigate resistance. We have recently discovered that several docetaxel-resistant mPCa cell lines exhibit lower uptake of cellular copper and uniquely express higher levels of a copper exporter protein ATP7B.
View Article and Find Full Text PDF