J Stroke Cerebrovasc Dis
December 2021
Acute subdural hematoma is a devastating neurological injury with significant morbidity and mortality. In patients with large subdural hematoma resulting in compression of the underlying brain and lateral brain shift, severe neurological deficits and coma can occur. Emergent neurosurgical decompression is a life-saving intervention which improves mortality and neurological function.
View Article and Find Full Text PDFFunctional recovery following nerve injury declines when target re-innervation is delayed. Currently, no intervention exists to improve outcomes after prolonged denervation. We explored the neuroregenerative effects of glial cell line-derived neurotrophic factor (GDNF) and chondroitinase (CDN) in a chronic denervation animal model.
View Article and Find Full Text PDFDuring the 1940s in America, as medicine became more research-focused, medical researcher heroes were described as devotedly pursuing miraculous medicine. At the same time, Hollywood thrived, and films were an effective means to help build the myth of the physician hero. Cinematic techniques, rather than only the narrative, of four films, Dr.
View Article and Find Full Text PDFFunctional outcomes following nerve repair remain suboptimal. Scarring at the repair site is a major impediment to regeneration. A biomaterial scaffold applied around the coaptation site that decreases inflammation holds great potential in reducing scarring, enhancing axonal growth, and improving functional recovery.
View Article and Find Full Text PDFFollowing injury, distal axons undergo the process of Wallerian degeneration, and then cell debris is cleared to create a permissive environment for axon regeneration. The innate and adaptive immune systems are believed to be critical for facilitating the clearance of myelin and axonal debris during this process. However, immunodeficient animal models are regularly used in transplantation studies investigating cell therapies to modulate the degenerative/regenerative response.
View Article and Find Full Text PDFSynthetic biological tools that enable precise regulation of gene function within in vivo systems have enormous potential to discern gene function in diverse physiological settings. Here we report the development and characterization of a synthetic gene switch that, when targeted in the mouse germline, enables conditional inactivation, reports gene expression and allows inducible restoration of the targeted gene. Gene inactivation and reporter expression is achieved through Cre-mediated stable inversion of an integrated gene-trap reporter, whereas inducible gene restoration is afforded by Flp-dependent deletion of the inverted gene trap.
View Article and Find Full Text PDFPeripheral neuropathy is a common complication of a variety of diseases and treatments, including diabetes, cancer chemotherapy, and infectious causes (HIV, hepatitis C, and Campylobacter jejuni). Despite the fundamental difference between these insults, peripheral neuropathy develops as a combination of just six primary mechanisms: altered metabolism, covalent modification, altered organelle function and reactive oxygen species formation, altered intracellular and inflammatory signaling, slowed axonal transport, and altered ion channel dynamics and expression. All of these pathways converge to lead to axon dysfunction and symptoms of neuropathy.
View Article and Find Full Text PDFThe PISCF-allatostatins (Manduca sexta- or C-type allatostatins) are a family of pentadecapeptides characterized by a pyroglutamine blocked N-terminus, an unamidated-PISCF C-terminus, and a disulfide bridge between two internal Cys residues. Several isoforms of PISCF-AST are known, all from holometabolous insects. Using a combination of transcriptomics and mass spectrometry, we have identified the first PISCF-type peptides from a non-insect species.
View Article and Find Full Text PDFThe allatostatins comprise three structurally distinct peptide families that regulate juvenile hormone production by the insect corpora allata. A-type family members contain the C-terminal motif -YXFGLamide and have been found in species from numerous arthropod taxa. Members of the B-type family exhibit a -WX(6)Wamide C-terminus and, like the A-type peptides, appear to be broadly conserved within the Arthropoda.
View Article and Find Full Text PDFRecently, cDNAs encoding prepro-orcokinins were cloned from the crayfish Procambarus clarkii; these cDNAs encode multiple copies of four orcokinin isoforms as well as several other peptides. Using the translated open reading frames of the P. clarkii transcripts as queries, five ESTs encoding American lobster Homarus americanus orthologs were identified via BLAST analysis.
View Article and Find Full Text PDFTwo tachykinin-related peptides (TRPs) are known in decapods, APSGFLGMRamide and TPSGFLGMRamide. The former peptide appears to be ubiquitously conserved in members of this taxon, while the latter has been suggested to be a genus (Cancer)- or infraorder (Brachyura)-specific isoform. Here, we characterized a cDNA from the American lobster Homarus americanus (infraorder Astacidea) that encodes both TRPs: six copies of APSGFLGMRamide and one of TPSGFLGMRamide.
View Article and Find Full Text PDFThe development of expressed sequence tags (ESTs) for crustacean cDNA libraries and their deposition in publicly accessible databases has generated a rich resource for peptide discovery in this commercially and ecologically important arthropod subphylum. Here, we have conducted in silico searches of these databases for unannotated ESTs encoding putative neuropeptide precursors using the BLAST program tblastn, and have predicted the mature forms of the peptides encoded by them. The primary strategy used was to query the database with known decapod prepro-hormone sequences or, in some instances, insect precursor protein sequences.
View Article and Find Full Text PDFRecently, we identified the peptide VYRKPPFNGSIFamide (Val(1)-SIFamide) in the stomatogastric nervous system (STNS) of the American lobster Homarus americanus using matrix-assisted laser desorption/ionization-Fourier transform mass spectrometry (MALDI-FTMS). Given that H. americanus is the only species thus far shown to possess this peptide, and that a second SIFamide isoform, Gly(1)-SIFamide, is broadly conserved in other decapods, including another astacidean, the crayfish Procambarus clarkii, we became interested both in confirming our identification of Val(1)-SIFamide via molecular methods and in determining the extent to which this isoform is conserved within other members of the infraorder Astacidea.
View Article and Find Full Text PDFMatrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) has become an important method for identifying peptides in neural tissues. The ultra-high-mass resolution and mass accuracy of MALDI-FTMS, in combination with in-cell accumulation techniques, can be used to advantage for the analysis of complex mixtures of peptides directly from tissue fragments or extracts. Given the diversity within the decapods, as well as the large number of extant species readily available for analysis, this group of animals represents an optimal model in which to examine phylogenetic conservation and evolution of neuropeptides and neuropeptide families.
View Article and Find Full Text PDFOver the past decade, mass spectrometry has become a prominent technique for identifying peptide hormones. In crustaceans, studies directed at characterizing the peptide complements present in neuroendocrine structures have generally involved the isolation of tissue from a large number of individuals, which are pooled, extracted, purified, and then analyzed via chromatographic techniques coupled with mass spectrometry. While this approach provides information on the peptides present in the population of animals used as the tissue source, data on the peptide complement present in any individual animal are lost.
View Article and Find Full Text PDF