This paper presents the first classical Convolutional Neural Network (CNN) that can be applied directly to data from unstructured finite element meshes or control volume grids. CNNs have been hugely influential in the areas of image classification and image compression, both of which typically deal with data on structured grids. Unstructured meshes are frequently used to solve partial differential equations and are particularly suitable for problems that require the mesh to conform to complex geometries or for problems that require variable mesh resolution.
View Article and Find Full Text PDFJ Ambient Intell Humaniz Comput
March 2023
Vaccination strategy is crucial in fighting the COVID-19 pandemic. Since the supply is still limited in many countries, contact network-based interventions can be most powerful to set an efficient strategy by identifying high-risk individuals or communities. However, due to the high dimension, only partial and noisy network information can be available in practice, especially for dynamic systems where contact networks are highly time-variant.
View Article and Find Full Text PDFWe propose a novel use of generative adversarial networks (GANs) (i) to make predictions in time (PredGAN) and (ii) to assimilate measurements (DA-PredGAN). In the latter case, we take advantage of the natural adjoint-like properties of generative models and the ability to simulate forwards and backwards in time. GANs have received much attention recently, after achieving excellent results for their generation of realistic-looking images.
View Article and Find Full Text PDFWe propose the use of reduced order modeling (ROM) to reduce the computational cost and improve the convergence rate of nonlinear solvers of full order models (FOM) for solving partial differential equations. In this study, a novel ROM-assisted approach is developed to improve the computational efficiency of FOM nonlinear solvers by using ROM's prediction as an initial guess. We hypothesize that the nonlinear solver will take fewer steps to the converged solutions with an initial guess that is closer to the real solutions.
View Article and Find Full Text PDFUnderground railway systems are recognised spaces of increased personal pollution exposure. We studied the number-size distribution and physico-chemical characteristics of ultrafine (PM), fine (PM) and coarse (PM) particles collected on a London underground platform. Particle number concentrations gradually increased throughout the day, with a maximum concentration between 18:00 h and 21:00 h (local time).
View Article and Find Full Text PDFThe outbreak of the coronavirus disease 2019 (COVID-19) has now spread throughout the globe infecting over 150 million people and causing the death of over 3.2 million people. Thus, there is an urgent need to study the dynamics of epidemiological models to gain a better understanding of how such diseases spread.
View Article and Find Full Text PDF