Publications by authors named "Christopher C Franklin"

Glutathionylation is a posttranslational modification that results in the formation of a mixed disulfide between glutathione and the thiol group of a protein cysteine residue. Glutathionylation of proteins occurs via both nonenzymatic mechanisms involving thiol/disulfide exchange and enzyme-mediated reactions. Protein glutathionylation is observed in response to oxidative or nitrosative stress and is redox-dependent, being readily reversible under reducing conditions.

View Article and Find Full Text PDF

The antioxidant glutathione (GSH) plays a critical role in maintaining intracellular redox homeostasis but in tumors the GSH biosynthetic pathway is often dysregulated, contributing to tumor resistance to radiation and chemotherapy. Glutamate-cysteine ligase (GCL) catalyzes the first and rate-limiting reaction in GSH synthesis, and enzyme function is controlled by GSH feedback inhibition or by transcriptional upregulation of the catalytic (GCLC) and modifier (GCLM) subunits. However, it has recently been reported that the activity of GCLC and the formation of GCL can be modified by reactive aldehyde products derived from lipid peroxidation.

View Article and Find Full Text PDF

Alcoholic liver disease (ALD) is a primary cause of morbidity and mortality in the United States and constitutes a significant socioeconomic burden. Previous work has implicated oxidative stress and endoplasmic reticulum (ER) stress in the etiology of ALD; however, the complex and interrelated nature of these cellular responses presently confounds our understanding of ethanol-induced hepatopathy. In this paper, we assessed the pathological contribution of oxidative stress and ER stress in a time-course mouse model of early-stage ALD.

View Article and Find Full Text PDF

Chalcones continue to attract considerable interest due to their anti-inflammatory and antiangiogenic properties. We recently reported the ability of 2',5'-dihydroxychalcone (2',5'-DHC) to induce both breast cancer resistance protein-mediated export of glutathione (GSH) and c-Jun N-terminal kinase-mediated increased intracellular GSH levels. Herein, we report a structure-activity relationship study of a series of 30 synthetic chalcone derivatives with hydroxyl, methoxyl, and halogen (F and Cl) substituents and their ability to increase intracellular GSH levels.

View Article and Find Full Text PDF

Chemotherapy is central to the current treatment modality for primary human brain tumors, but despite high-dose and intensive treatment regimens there has been little improvement in patient outcome. The development of tumor chemoresistance has been proposed as a major contributor to this lack of response. While there have been some improvements in our understanding of the molecular mechanisms underlying brain tumor drug resistance over the past decade, the contribution of glutathione (GSH) and the GSH-related enzymes to drug resistance in brain tumors have been largely overlooked.

View Article and Find Full Text PDF

Hydroxychalcones are naturally occurring compounds that continue to attract considerable interest because of their anti-inflammatory and antiangiogenic properties. They have been reported to inhibit the synthesis of the inducible nitric oxide synthase and to induce the expression of heme oxygenase-1. This study examines the mechanisms by which 2',5'-dihydroxychalcone (2',5'-DHC) induces an increase in cellular glutathione (GSH) levels using a cell line stably expressing a luciferase reporter gene driven by antioxidant-response elements (MCF-7/AREc32).

View Article and Find Full Text PDF

4-Hydroxy-2-nonenal (4-HNE) is a lipid peroxidation product formed during oxidative stress that can alter protein function via adduction of nucleophilic amino acid residues. 4-HNE detoxification occurs mainly via glutathione (GSH) conjugation and transporter-mediated efflux. This results in a net loss of cellular GSH, and restoration of GSH homeostasis requires de novo GSH biosynthesis.

View Article and Find Full Text PDF

Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the formation of the cellular antioxidant glutathione (GSH). The GCL holoenzyme consists of two separately coded proteins, a catalytic subunit (GCLC) and a modifier subunit (GCLM). Both GCLC and GLCM are controlled transcriptionally by a variety of cellular stimuli, including oxidative stress.

View Article and Find Full Text PDF

Trivalent arsenite (As(3+)) is a known human carcinogen capable of inducing both cellular transformation and apoptotic cell death by mechanisms involving the production of reactive oxygen species. The tripeptide antioxidant glutathione (GSH) constitutes a vital cellular defense mechanism against oxidative stress. While intracellular levels of GSH are an important determinant of cellular susceptibility to undergo apoptotic cell death, it is not known whether cellular GSH biosynthetic capacity per se regulates As(3+)-induced apoptosis.

View Article and Find Full Text PDF

The glutathione (GSH) antioxidant defense system plays a central role in protecting mammalian cells against oxidative injury. Glutamate cysteine ligase (GCL) is the rate-limiting enzyme in GSH biosynthesis and is a heterodimeric holoenzyme composed of catalytic (GCLC) and modifier (GCLM) subunits. As a means of assessing the cytoprotective effects of enhanced GSH biosynthetic capacity, we have developed a protein transduction approach whereby recombinant GCL protein can be rapidly and directly transferred into cells when coupled to the HIV TAT protein transduction domain.

View Article and Find Full Text PDF

Trivalent arsenite (As(3+)) is a known human carcinogen that is also capable of inducing apoptotic cell death. Increased production of reactive oxygen species is thought to contribute to both the carcinogenic and the cytotoxic effects of As(3+). Glutathione (GSH) constitutes a vital cellular defense mechanism against oxidative stress.

View Article and Find Full Text PDF

Glutathione (GSH) is a tripeptide composed of glutamate, cysteine, and glycine. The first and rate-limiting step in GSH synthesis is catalyzed by glutamate cysteine ligase (GCL, previously known as gamma-glutamylcysteine synthetase). GCL is a heterodimeric protein composed of catalytic (GCLC) and modifier (GCLM) subunits that are expressed from different genes.

View Article and Find Full Text PDF

Neutrophils are the primary inflammatory cell in smokers' lungs, but little is known about the ability of cigarette smoke to modulate neutrophil function. Neutrophils undergo caspase-3-dependent spontaneous, as well as phagocytosis-induced, apoptosis. This study investigated the ability of cigarette smoke extract (CSE) to alter neutrophil caspase-3 activity, apoptosis, and phagocytosis.

View Article and Find Full Text PDF

The catalytic subunit of glutamylcysteine ligase (GCLC) primarily regulates de novo synthesis of glutathione (GSH) in mammalian cells and is central to the antioxidant capacity of the cell. However, GCLC expression in pancreatic islets has not been previously examined. We designed experiments to ascertain whether GCLC is normally expressed in islets and whether it is up-regulated by interleukin-1 beta (IL-1 beta).

View Article and Find Full Text PDF

Glutathione (GSH) is important in free radical scavenging, maintaining cellular redox status, and regulating cell survival in response to a wide variety of toxicants. The rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which is composed of catalytic (GCLC) and modifier (GCLM) subunits. To determine whether increased GSH biosynthetic capacity enhances cellular resistance to tumor necrosis factor-alpha- (TNF-alpha-) induced apoptotic cell death, we have established several mouse liver hepatoma (Hepa-1) cell lines overexpressing GCLC and/or GCLM.

View Article and Find Full Text PDF

Glutamate cysteine ligase (GCL), composed of a catalytic (GCLC) and modulatory (GCLM) subunit, catalyzes the first step of glutathione (GSH) biosynthesis. Using 4-hydroxy-2-nonenal (4HNE), 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and tertiary-butylhydroquinone (tBHQ) as models of oxidative stress which are known to work through different mechanisms, we measured changes in cellular GSH, GCL mRNA, and GCL protein. 4HNE and tBHQ treatments increased cellular GSH levels, while DMNQ exposure depleted GSH.

View Article and Find Full Text PDF

TGFbeta1-induced hepatocyte apoptosis involves the production of reactive oxygen species. An effective cellular defense mechanism against oxidative stress is the tripeptide glutathione (GSH), and the rate-limiting step in GSH biosynthesis is catalyzed by the heterodimeric holoenzyme glutamate cysteine ligase (GCL). Here, we demonstrate that TGFbeta1-induced apoptosis in the TAMH murine hepatocyte cell line is accompanied by both the cleavage and loss of the catalytic subunit of GCL (GCLC) and the down-regulation of GCLC gene expression resulting in a reduction in GCL activity and depletion of intracellular GSH.

View Article and Find Full Text PDF

Overdose of the popular, and relatively safe, analgesic acetaminophen (N-acetyl-p-aminophenol, APAP, paracetamol) can produce a fatal centrilobular liver injury. APAP-induced cell death was investigated in a differentiated, transforming growth factor alpha (TGFalpha)-overexpressing, hepatocyte cell line and found to occur at concentrations, and over time frames, relevant to clinical overdose situations. Coordinated multiorganellar collapse was evident during APAP-induced cytotoxicity with widespread, yet selective, protein degradation events in vitro.

View Article and Find Full Text PDF

Apoptotic cell death is usually accompanied by activation of a family of cysteine proteases termed caspases. Caspases mediate the selective proteolysis of multiple cellular targets often resulting in the disruption of survival pathways. Intracellular levels of the antioxidant glutathione (GSH) are an important determinant of cellular susceptibility to apoptosis.

View Article and Find Full Text PDF