Publications by authors named "Christopher C Drovandi"

Background: Uniform random sampling of mass-balanced flux solutions offers an unbiased appraisal of the capabilities of metabolic networks. Unfortunately, it is impossible to avoid thermodynamically infeasible loops in flux samples when using convex samplers on large metabolic models. Current strategies for randomly sampling the non-convex loopless flux space display limited efficiency and lack theoretical guarantees.

View Article and Find Full Text PDF

The degeneration of the human brain is a complex process, which often affects certain brain regions due to healthy aging or disease. This degeneration can be evaluated on regions of interest (ROI) in the brain through probabilistic networks and morphological estimates. Current approaches for finding such networks are limited to analyses at discrete neuropsychological stages, which cannot appropriately account for connectivity dynamics over the onset of cognitive deterioration, and morphological changes are seldom unified with connectivity networks, despite known dependencies.

View Article and Find Full Text PDF

The behaviour of many processes in science and engineering can be accurately described by dynamical system models consisting of a set of ordinary differential equations (ODEs). Often these models have several unknown parameters that are difficult to estimate from experimental data, in which case Bayesian inference can be a useful tool. In principle, exact Bayesian inference using Markov chain Monte Carlo (MCMC) techniques is possible; however, in practice, such methods may suffer from slow convergence and poor mixing.

View Article and Find Full Text PDF

Rotor stability and meandering are key mechanisms determining and sustaining cardiac fibrillation, with important implications for anti-arrhythmic drug development. However, little is yet known on how rotor dynamics are modulated by variability in cellular electrophysiology, particularly on kinetic properties of ion channel recovery. We propose a novel emulation approach, based on Gaussian process regression augmented with machine learning, for data enrichment, automatic detection, classification, and analysis of re-entrant biomarkers in cardiac tissue.

View Article and Find Full Text PDF

Functional response models are important in understanding predator-prey interactions. The development of functional response methodology has progressed from mechanistic models to more statistically motivated models that can account for variance and the over-dispersion commonly seen in the datasets collected from functional response experiments. However, little information seems to be available for those wishing to prepare optimal parameter estimation designs for functional response experiments.

View Article and Find Full Text PDF

Often derived from partial correlations or many pairwise analyses, covariance networks represent the inter-relationships among regions and can reveal important topological structures in brain measures from healthy and pathological subjects. However both approaches are not consistent network estimators and are sensitive to the value of the tuning parameters. Here, we propose a consistent covariance network estimator by maximising the network likelihood (MNL) which is robust to the tuning parameter.

View Article and Find Full Text PDF

Background: There is convincing evidence for the benefits of resistance training on vertical jump improvements, but little evidence to guide optimal training prescription. The inability to detect small between modality effects may partially reflect the use of ANOVA statistics. This study represents the results of a sub-study from a larger project investigating the effects of two resistance training methods on load carriage running energetics.

View Article and Find Full Text PDF

The understanding of complex physical or biological systems nearly always requires a characterization of the variability that underpins these processes. In addition, the data used to calibrate these models may also often exhibit considerable variability. A recent approach to deal with these issues has been to calibrate populations of models (POMs), multiple copies of a single mathematical model but with different parameter values, in response to experimental data.

View Article and Find Full Text PDF

Big Datasets are endemic, but are often notoriously difficult to analyse because of their size, heterogeneity and quality. The purpose of this paper is to open a discourse on the potential for modern decision theoretic optimal experimental design methods, which by their very nature have traditionally been applied prospectively, to improve the analysis of Big Data through retrospective designed sampling in order to answer particular questions of interest. By appealing to a range of examples, it is suggested that this perspective on Big Data modelling and analysis has the potential for wide generality and advantageous inferential and computational properties.

View Article and Find Full Text PDF

Seawater temperature anomalies associated with warming climate have been linked to increases in coral disease outbreaks that have contributed to coral reef declines globally. However, little is known about how seasonal scale variations in environmental factors influence disease dynamics at the level of individual coral colonies. In this study, we applied a multi-state Markov model (MSM) to investigate the dynamics of black band disease (BBD) developing from apparently healthy corals and/or a precursor-stage, termed 'cyanobacterial patches' (CP), in relation to seasonal variation in light and seawater temperature at two reef sites around Pelorus Island in the central sector of the Great Barrier Reef.

View Article and Find Full Text PDF

Objectives: In recent years, large-scale longitudinal neuroimaging studies have improved our understanding of healthy ageing and pathologies including Alzheimer's disease (AD). A particular focus of these studies is group differences and identification of participants at risk of deteriorating to a worse diagnosis. For this, statistical analysis using linear mixed-effects (LME) models are used to account for correlated observations from individuals measured over time.

View Article and Find Full Text PDF

Monitoring programs are essential for understanding patterns, trends, and threats in ecological and environmental systems. However, such programs are costly in terms of dollars, human resources, and technology, and complex in terms of balancing short- and long-term requirements. In this work, We develop new statistical methods for implementing cost-effective adaptive sampling and monitoring schemes for coral reef that can better utilize existing information and resources, and which can incorporate available prior information.

View Article and Find Full Text PDF

Background: Published energy cost data for children and adolescents are lacking. The purpose of this study was to measure and describe developmental trends in the energy cost of 12 physical activities commonly performed by youth.

Methods: A mixed age cohort of 209 participants completed 12 standardized activity trials on 4 occasions over a 3-year period (baseline, 12-months, 24-months, and 36-months) while wearing a portable indirect calorimeter.

View Article and Find Full Text PDF

The aim of this paper is to provide a Bayesian formulation of the so-called magnitude-based inference approach to quantifying and interpreting effects, and in a case study example provide accurate probabilistic statements that correspond to the intended magnitude-based inferences. The model is described in the context of a published small-scale athlete study which employed a magnitude-based inference approach to compare the effect of two altitude training regimens (live high-train low (LHTL), and intermittent hypoxic exposure (IHE)) on running performance and blood measurements of elite triathletes. The posterior distributions, and corresponding point and interval estimates, for the parameters and associated effects and comparisons of interest, were estimated using Markov chain Monte Carlo simulations.

View Article and Find Full Text PDF

In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data.

View Article and Find Full Text PDF

In this article we present a new method for performing Bayesian parameter inference and model choice for low- count time series models with intractable likelihoods. The method involves incorporating an alive particle filter within a sequential Monte Carlo (SMC) algorithm to create a novel exact-approximate algorithm, which we refer to as alive SMC2. The advantages of this approach over competing methods are that it is naturally adaptive, it does not involve between-model proposals required in reversible jump Markov chain Monte Carlo, and does not rely on potentially rough approximations.

View Article and Find Full Text PDF

Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values.

View Article and Find Full Text PDF

Objectives: Directly measuring disease incidence in a population is difficult and not feasible to do routinely. We describe the development and application of a new method for estimating at a population level the number of incident genital chlamydia infections, and the corresponding incidence rates, by age and sex using routine surveillance data.

Methods: A Bayesian statistical approach was developed to calibrate the parameters of a decision-pathway tree against national data on numbers of notifications and tests conducted (2001-2013).

View Article and Find Full Text PDF

Analytically or computationally intractable likelihood functions can arise in complex statistical inferential problems making them inaccessible to standard Bayesian inferential methods. Approximate Bayesian computation (ABC) methods address such inferential problems by replacing direct likelihood evaluations with repeated sampling from the model. ABC methods have been predominantly applied to parameter estimation problems and less to model choice problems due to the added difficulty of handling multiple model spaces.

View Article and Find Full Text PDF

In this paper we present a methodology for designing experiments for efficiently estimating the parameters of models with computationally intractable likelihoods. The approach combines a commonly used methodology for robust experimental design, based on Markov chain Monte Carlo sampling, with approximate Bayesian computation (ABC) to ensure that no likelihood evaluations are required. The utility function considered for precise parameter estimation is based upon the precision of the ABC posterior distribution, which we form efficiently via the ABC rejection algorithm based on pre-computed model simulations.

View Article and Find Full Text PDF