Publications by authors named "Christopher C Dombrowski"

Mutations in the breast cancer susceptibility gene, , greatly increase an individual's lifetime risk of developing breast and ovarian cancers. suppresses tumor formation by potentiating DNA repair via homologous recombination. Central to recombination is the assembly of a RAD51 nucleoprotein filament, which forms on single-stranded DNA (ssDNA) generated at or near the site of chromosomal damage.

View Article and Find Full Text PDF

In this protocol, we describe a procedure to generate 'DNA dumbbells'-single molecules of DNA with a microscopic bead attached at each end-and techniques for manipulating individual DNA dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA dumbbells and to visualize individual protein-DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free reservoir.

View Article and Find Full Text PDF

Escherichia coli RecA is the defining member of a ubiquitous class of DNA strand-exchange proteins that are essential for homologous recombination, a pathway that maintains genomic integrity by repairing broken DNA. To function, filaments of RecA must nucleate and grow on single-stranded DNA (ssDNA) in direct competition with ssDNA-binding protein (SSB), which rapidly binds and continuously sequesters ssDNA, kinetically blocking RecA assembly. This dynamic self-assembly on a DNA lattice, in competition with another protein, is unique for the RecA family compared to other filament-forming proteins such as actin and tubulin.

View Article and Find Full Text PDF

Genetic evidence indicates that Saccharomyces cerevisiae Sgs1, Top3, and Rmi1 resolve topologically linked intermediates arising from DNA replication and recombination. Using purified proteins, we show that Sgs1, Top3, Rmi1, and replication protein A (RPA) coordinate catenation and decatenation of dsDNA through sequential passage of single strands of DNA, establishing a unique pathway for dsDNA decatenation in eukaryotic cells. Sgs1 is required for dsDNA unwinding and, unexpectedly, also has a structural role in DNA strand passage.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae Dmc1 and Tid1 proteins are required for the pairing of homologous chromosomes during meiotic recombination. This pairing is the precursor to the formation of crossovers between homologs, an event that is necessary for the accurate segregation of chromosomes. Failure to form crossovers can have serious consequences and may lead to chromosomal imbalance.

View Article and Find Full Text PDF

In traditional biochemical experiments, the behavior of individual proteins is obscured by ensemble averaging. To better understand the behavior of proteins that bind to and/or translocate on DNA, we have developed instrumentation that uses optical trapping, microfluidic solution delivery, and fluorescent microscopy to visualize either individual proteins or assemblies of proteins acting on single molecules of DNA. The general experimental design involves attaching a single DNA molecule to a polystyrene microsphere that is then used as a microscopic handle to manipulate individual DNA molecules with a laser trap.

View Article and Find Full Text PDF