Macrocycles occupy chemical space "beyond the rule of five". They bridge traditional bioactive small molecule drugs and macromolecules and have the potential to modulate challenging targets such as PPI or proteases. Here we report an on-DNA macrocyclization reaction utilizing intramolecular benzimidazole formation.
View Article and Find Full Text PDFEnzymatic catalysis is a highly attractive approach to the DNA encoded library technology (DEL) that has not been widely explored. In this paper, we report an l-threonine aldolase (l-TA)-catalyzed on-DNA aldol reaction to form β-hydroxy-α-amino acids, and its diastereoselectivity determination. l-TAs from three species show good on-DNA aldehyde scope and complementary stereoselectivity.
View Article and Find Full Text PDFThe identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus.
View Article and Find Full Text PDFSelection of target-binding ligands from DNA-encoded libraries of small molecules (DELSMs) is a rapidly developing approach in drug-lead discovery. Methods of kinetic capillary electrophoresis (KCE) may facilitate highly efficient homogeneous selection of ligands from DELSMs. However, KCE methods require accurate prediction of electrophoretic mobilities of protein-ligand complexes.
View Article and Find Full Text PDFTo identify BCATm inhibitors suitable for in vivo study, Encoded Library Technology (ELT) was used to affinity screen a 117 million member benzimidazole based DNA encoded library, which identified an inhibitor series with both biochemical and cellular activities. Subsequent SAR studies led to the discovery of a highly potent and selective compound, 1-(3-(5-bromothiophene-2-carboxamido)cyclohexyl)-N-methyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole-5-carboxamide (8b) with much improved PK properties. X-ray structure revealed that 8b binds to the active site of BACTm in a unique mode via multiple H-bond and van der Waals interactions.
View Article and Find Full Text PDFAs a potential target for obesity, human BCATm was screened against more than 14 billion DNA encoded compounds of distinct scaffolds followed by off-DNA synthesis and activity confirmation. As a consequence, several series of BCATm inhibitors were discovered. One representative compound (R)-3-((1-(5-bromothiophene-2-carbonyl)pyrrolidin-3-yl)oxy)-N-methyl-2'-(methylsulfonamido)-[1,1'-biphenyl]-4-carboxamide (15e) from a novel compound library synthesized via on-DNA Suzuki-Miyaura cross-coupling showed BCATm inhibitory activity with IC50 = 2.
View Article and Find Full Text PDFSelection of protein binders from highly diverse combinatorial libraries of DNA-encoded small molecules is a highly promising approach for discovery of small-molecule drug leads. Methods of kinetic capillary electrophoresis provide the high efficiency of partitioning required for such selection but require the knowledge of electrophoretic mobility of the protein-ligand complex. Here we present a theoretical approach for an accurate estimate of the electrophoretic mobility of such complexes.
View Article and Find Full Text PDFJ Med Chem
February 2014
Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains.
View Article and Find Full Text PDFSemisynthetic analogues of fumagillin, 1, inhibit methionine aminopeptidase-2 (MetAP2) and have entered the clinic for the treatment of cancer. An optimized fumagillin analogue, 3 (PPI-2458), was found to be orally active, despite containing a spiroepoxide function that formed a covalent linkage to the target protein. In aqueous acid, 3 underwent ring-opening addition of water and HCl, leading to four products, 4-7, which were characterized in detail.
View Article and Find Full Text PDFThe natural product fumagillin exhibits potent antiproliferative and antiangiogenic properties. The semisynthetic analog PPI-2458, [(3R,4S,5S,6R)-5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methylbut-2-enyl)oxiran-2-yl]-1-oxaspiro[2.5]octan-6-yl] N-[(2R)-1-amino-3-methyl-1-oxobutan-2-yl]carbamate, demonstrates rapid inactivation of its molecular target, methionine aminopeptidase-2 (MetAP2), and good efficacy in several rodent models of cancer and inflammation with oral dosing despite low apparent oral bioavailability.
View Article and Find Full Text PDFThe metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality.
View Article and Find Full Text PDFInhibition of methionine aminopeptidase-2 (MetAP2) represents a novel approach to antiangiogenic therapy. We describe the synthesis and activity of fumagillin analogues that address the pharmacokinetic and safety liabilities of earlier candidates in this compound class. Two-step elaboration of fumagillol with amines yielded a diverse series of carbamates at C6 of the cyclohexane spiroepoxide.
View Article and Find Full Text PDFBiochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide.
View Article and Find Full Text PDF