Publications by authors named "Christopher Bristow"

Article Synopsis
  • Exploiting TRAILR2 activation could improve cancer treatments, but past therapies faced issues like low effectiveness and liver damage.
  • The new TR2/CDH3 BAB antibody targets both CDH3 and TRAILR2, enhancing apoptosis specifically in tumor cells expressing CDH3, showcasing effectiveness in various cancers and CRISPR-engineered models.
  • In pancreatic cancer, where current treatments are lacking, TR2/CDH3 BAB shows promise, especially when used with other chemotherapy drugs, indicating potential for effective cancer therapy with a good safety profile.
View Article and Find Full Text PDF

Purpose: BRAFV600E-mutated colorectal cancer exhibits a strong correlation with DNA hypermethylation, suggesting that this subgroup of tumors presents unique epigenomic phenotypes. Nonetheless, 5-azacitidine, which inhibits DNA methyltransferase activity, is not efficacious in BRAFV600E colorectal cancer in vivo.

Experimental Design: We randomized and treated mice implanted with patient-derived tumor xenografts harboring BRAFV600E mutation with control, 5-azacitidine, vemurafenib (BRAF inhibitor), or the combination.

View Article and Find Full Text PDF

Combination approaches are needed to strengthen and extend the clinical response to KRAS inhibitors (KRASi). Here, we assessed the antitumor responses of KRAS mutant lung and colorectal cancer models to combination treatment with a SOS1 inhibitor (SOS1i), BI-3406, plus the KRAS inhibitor, adagrasib. We found that responses to BI-3406 plus adagrasib were stronger than to adagrasib alone, comparable to adagrasib with SHP2 (SHP2i) or EGFR inhibitors and correlated with stronger suppression of RAS-MAPK signaling.

View Article and Find Full Text PDF
Article Synopsis
  • KRAS inhibitors are medicine that work against a type of pancreatic cancer called PDAC, but patients often develop resistance to these treatments.
  • When patients with a specific mutation (KRASG12C) took certain drugs, new mutations and changes were found that helped the cancer resist the treatment.
  • Using a mix of KRAS inhibitors and chemotherapy showed better results in controlling tumors in mouse models, suggesting that combining treatments might be a smarter approach for patients.
View Article and Find Full Text PDF

Purpose: Mutations in the ATM gene are common in multiple cancers, but clinical studies of therapies targeting ATM-aberrant cancers have yielded mixed results. Refinement of ATM loss of function (LOF) as a predictive biomarker of response is urgently needed.

Experimental Design: We present the first disclosure and preclinical development of a novel, selective ATR inhibitor, ART0380, and test its antitumor activity in multiple preclinical cancer models.

View Article and Find Full Text PDF

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells.

View Article and Find Full Text PDF

Efforts to improve the anti-tumor response to KRAS targeted therapy have benefited from leveraging combination approaches. Here, we compare the anti-tumor response induced by the SOS1-KRAS interaction inhibitor, BI-3406, combined with a KRAS inhibitor (KRASi) to those induced by KRASi alone or combined with SHP2 or EGFR inhibitors. In lung cancer and colorectal cancer (CRC) models, BI-3406 plus KRASi induces an anti-tumor response stronger than that observed with KRASi alone and comparable to those by the other combinations.

View Article and Find Full Text PDF

Although targeting oxidative phosphorylation (OXPHOS) is a rational anticancer strategy, clinical benefit with OXPHOS inhibitors has yet to be achieved. Here we advanced IACS-010759, a highly potent and selective small-molecule complex I inhibitor, into two dose-escalation phase I trials in patients with relapsed/refractory acute myeloid leukemia (NCT02882321, n = 17) and advanced solid tumors (NCT03291938, n = 23). The primary endpoints were safety, tolerability, maximum tolerated dose and recommended phase 2 dose (RP2D) of IACS-010759.

View Article and Find Full Text PDF

Summary: The NanoTube is an open-source pipeline that simplifies the processing, quality control, normalization and analysis of NanoString nCounter gene expression data. It is implemented in an extensible R library, which performs a variety of gene expression analysis techniques and contains additional functions for integration with other R libraries performing advanced NanoString analysis techniques. Additionally, the NanoTube web application is available as a simple tool for researchers without programming expertise.

View Article and Find Full Text PDF

PICKLES (https://pickles.hart-lab.org) is an updated web interface to a freely available database of genome-scale CRISPR knockout fitness screens in human cell lines.

View Article and Find Full Text PDF
Article Synopsis
  • * A novel integration approach using the shared nearest neighbors algorithm was developed, enabling the creation of a comprehensive network from immunogenomic data of non-small-cell lung cancer patients.
  • * This new approach surpassed traditional networks in identifying established and novel interactions, revealing significant insights related to patient recurrence and the TP53 oncogenotype.
View Article and Find Full Text PDF

Background: Coessentiality networks derived from CRISPR screens in cell lines provide a powerful framework for identifying functional modules in the cell and for inferring the roles of uncharacterized genes. However, these networks integrate signal across all underlying data and can mask strong interactions that occur in only a subset of the cell lines analyzed.

Results: Here, we decipher dynamic functional interactions by identifying significant cellular contexts, primarily by oncogenic mutation, lineage, and tumor type, and discovering coessentiality relationships that depend on these contexts.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers are studying fusion genes, which are special DNA changes found in cancer patients, to see how they affect treatment.
  • They developed new tests to better understand these fusion genes and found some that help tumors grow and impact how effective certain drugs are.
  • The team created a system to help classify these fusion genes, highlighting the importance of further research to personalize cancer treatment.
View Article and Find Full Text PDF

Targeted and immunotherapy regimens have revolutionized the treatment of advanced melanoma patients. Despite this, only a subset of patients respond durably. Recently, combination strategies of BRAF/MEK inhibitors with immune checkpoint inhibitor monotherapy (α-CTLA-4 or α-PD-1) have increased the rate of durable responses.

View Article and Find Full Text PDF

Oxidative phosphorylation (OXPHOS) is an active metabolic pathway in many cancers. RNA from pretreatment biopsies from patients with triple-negative breast cancer (TNBC) who received neoadjuvant chemotherapy demonstrated that the top canonical pathway associated with worse outcome was higher expression of OXPHOS signature. IACS-10759, a novel inhibitor of OXPHOS, stabilized growth in multiple TNBC patient-derived xenografts (PDX).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a heterogeneous disease showing significant variability in clinical aggressiveness. Primary and acquired resistance limits the efficacy of available treatments, and identification of effective drug combinations is needed to further improve patients' outcomes. We previously found that the NEDD8-activating enzyme inhibitor pevonedistat induced tumor stabilization in preclinical models of poorly differentiated, clinically aggressive CRC resistant to available therapies.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer that has remained clinically challenging to manage. Here we employ an RNAi-based in vivo functional genomics platform to determine epigenetic vulnerabilities across a panel of patient-derived PDAC models. Through this, we identify protein arginine methyltransferase 1 (PRMT1) as a critical dependency required for PDAC maintenance.

View Article and Find Full Text PDF

Lack of sustained response to therapeutic agents in patients with KRAS-mutant lung cancer poses a major challenge and arises partly due to intratumor heterogeneity that defines phenotypically distinct tumor subpopulations. To attain better therapeutic outcomes, it is important to understand the differential therapeutic sensitivities of tumor cell subsets. Epithelial-mesenchymal transition is a biological phenomenon that can alter the state of cells along a phenotypic spectrum and cause transcriptional rewiring to produce distinct tumor cell subpopulations.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is almost universally lethal. A critical unmet need exists to explore essential susceptibilities in PDAC and to identify druggable targets to improve PDAC treatment. KRAS mutations dominate the genetic landscape of PDAC and lead to activation of multiple downstream pathways and cellular processes.

View Article and Find Full Text PDF

Molecular alterations in the PI3K/AKT pathway occur frequently in hormone receptor-positive breast tumors. Patients with ER-positive, HER2-negative metastatic breast cancer are often treated with CDK4/6 inhibitors such as palbociclib in combination with endocrine therapy. Although this is an effective regimen, most patients ultimately progress.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is almost uniformly fatal and characterized by early metastasis. Oncogenic mutations prevail in 95% of PDAC tumors and co-occur with genetic alterations in the tumor suppressor in nearly 70% of patients. Most alterations are missense mutations that exhibit gain-of-function phenotypes that include increased invasiveness and metastasis, yet the extent of direct cooperation between effectors and mutant p53 remains largely undefined.

View Article and Find Full Text PDF

Background & Aims: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer.

Methods: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC.

Results: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC.

View Article and Find Full Text PDF

Cellular dedifferentiation is a key mechanism driving cancer progression. Acquisition of mesenchymal features has been associated with drug resistance, poor prognosis, and disease relapse in many tumor types. Therefore, successful targeting of tumors harboring these characteristics is a priority in oncology practice.

View Article and Find Full Text PDF

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound (IPN60090), which is currently in phase 1 clinical trials.

View Article and Find Full Text PDF

Cytotoxic T lymphocyte (CTL)-based cancer immunotherapies have shown great promise for inducing clinical regressions by targeting tumor-associated antigens (TAA). To expand the TAA landscape of pancreatic ductal adenocarcinoma (PDAC), we performed tandem mass spectrometry analysis of HLA class I-bound peptides from 35 PDAC patient tumors. This identified a shared HLA-A*0101 restricted peptide derived from co-transcriptional activator Vestigial-like 1 (VGLL1) as a putative TAA demonstrating overexpression in multiple tumor types and low or absent expression in essential normal tissues.

View Article and Find Full Text PDF