Publications by authors named "Christopher Bergeron"

Myelin's role in processing speed is pivotal, as it facilitates efficient neural conduction. Its decline could significantly affect cognitive efficiency during ageing. In this work, myelin content was quantified using our advanced MRI method of myelin water fraction mapping.

View Article and Find Full Text PDF
Article Synopsis
  • * A study involving 138 cognitively unimpaired adults investigated how myelin content impacts gait speed over approximately 6.42 years, using advanced imaging techniques to assess myelin levels and standard protocols for measuring usual and rapid gait speeds.
  • * Results indicate that lower myelin content is associated with a notable decline in usual gait speed, particularly in brain areas related to motor planning, suggesting that monitoring gait speed could help identify neurodegeneration in otherwise healthy individuals.
View Article and Find Full Text PDF

Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested.

View Article and Find Full Text PDF

Methionine is an essential proteinogenic amino acid, but its excess can lead to deleterious effects. Inborn errors of methionine metabolism resulting from loss of function in cystathionine β-synthase (CBS) cause classic homocystinuria (HCU), which is managed by a methionine-restricted diet. Synthetic biotics are gastrointestinal tract-targeted live biotherapeutics that can be engineered to replicate the benefits of dietary restriction.

View Article and Find Full Text PDF

Physical impairments following cancer treatment have been linked with the toxic effects of these treatments on muscle mass and strength, through their deleterious effects on skeletal muscle mitochondrial oxidative capacity. Accordingly, we designed the present study to explore relationships of skeletal muscle mitochondrial oxidative capacity with physical performance and perceived cancer-related psychosocial experiences of cancer survivors. We assessed skeletal muscle mitochondrial oxidative capacity using in vivo phosphorus-31 magnetic resonance spectroscopy (P MRS), measuring the postexercise phosphocreatine resynthesis time constant, τPCr, in 11 post-chemotherapy participants aged 34-70 years.

View Article and Find Full Text PDF

The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL).

View Article and Find Full Text PDF

Purpose: Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent.

View Article and Find Full Text PDF

The brainstem functions as a relay and integrative brain center and plays an essential role in motor function. Whether brainstem tissue deterioration, including demyelination, affects motor function has not been studied. Understanding the potential relationship between brainstem demyelination and motor function may be useful for the early diagnosis of neurodegenerative diseases and to understand age-related gait impairments that have no apparent cause.

View Article and Find Full Text PDF

Diffusion-tensor magnetic resonance imaging (DT-MRI) offers objective measures of muscle characteristics, providing insights into age-related changes. We used DT-MRI to probe skeletal muscle microstructure and architecture in a large healthy-aging cohort, with the aim of characterizing age-related differences and comparing these to muscle strength. We recruited 94 participants (43 female; median age = 56, range = 22-89 years) and measured microstructure parameters-fractional anisotropy (FA) and mean diffusivity (MD)-in 12 thigh muscles, and architecture parameters-pennation angle, fascicle length, fiber curvature, and physiological cross-sectional area (PCSA)-in the rectus femoris (RF) and biceps femoris longus (BFL).

View Article and Find Full Text PDF

Enteric hyperoxaluria (EH) is a metabolic disease caused by excessive absorption of dietary oxalate leading to the formation of chronic kidney stones and kidney failure. There are no approved pharmaceutical treatments for EH. SYNB8802 is an engineered bacterial therapeutic designed to consume oxalate in the gut and lower urinary oxalate as a potential treatment for EH.

View Article and Find Full Text PDF

The g-ratio, defined as the inner-to-outer diameter of a myelinated axon, is associated with the speed of nerve impulse conduction, and represents an index of axonal myelination and integrity. It has been shown to be a sensitive and specific biomarker of neurodevelopment and neurodegeneration. However, there have been very few magnetic resonance imaging studies of the g-ratio in the context of normative aging; characterizing regional and time-dependent cerebral changes in g-ratio in cognitively normal subjects will be a crucial step in differentiating normal from abnormal microstructural alterations.

View Article and Find Full Text PDF

Synthetic biology is a powerful tool to create therapeutics which can be rationally designed to enable unique and combinatorial functionalities. Here we utilize non-pathogenic E coli Nissle as a versatile platform for the development of a living biotherapeutic for the treatment of cancer. The engineered bacterial strain, referred to as SYNB1891, targets STING-activation to phagocytic antigen-presenting cells (APCs) in the tumor and activates complementary innate immune pathways.

View Article and Find Full Text PDF

Total serum magnesium is a common clinical measurement for assessing magnesium status; however, magnesium in blood represents less than 1% of the body's total magnesium content. We measured intramuscular ionized magnesium by phosphorus magnetic resonance spectroscopy (P-MRS) and tested the hypothesis that this measure better correlates with skeletal muscle function and captures more closely the effect of aging than the traditional measure of total serum magnesium. Data were collected from 441 participants (age 24-98 years) in the Baltimore Longitudinal Study of Aging (BLSA), a study of normative aging that encompasses a broad age range.

View Article and Find Full Text PDF

The relationship between regional brain myelination and aging has been the subject of intense study, with magnetic resonance imaging perhaps the most effective modality for elucidating this. However, most of these studies have used nonspecific methods to probe myelin content, including diffusion tensor imaging, magnetization transfer ratio, and relaxation times. In the present study, we used the BMC-mcDESPOT analysis, a direct and specific method for imaging of myelin water fraction (MWF), a surrogate of myelin content.

View Article and Find Full Text PDF

Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain.

View Article and Find Full Text PDF

Maximum oxidative capacity of skeletal muscle measured by phosphorus magnetic resonance spectroscopy (P-MRS) declines with age, and negatively affects whole-body aerobic capacity. However, it remains unclear whether the loss of oxidative capacity is caused by reduced volume and function of mitochondria or limited substrate availability secondary to impaired muscle perfusion. Therefore, we sought to elucidate the role of muscle perfusion on the age-related decline of muscle oxidative capacity and ultimately whole-body aerobic capacity.

View Article and Find Full Text PDF

Aging is associated with impaired endothelium-dependent vasodilation that leads to muscle perfusion impairment and contributes to organ dysfunction. Impaired muscle perfusion may result in inadequate delivery of oxygen and nutrients during and after muscle contraction, leading to muscle damage. The ability to study the relationship between perfusion and muscle damage has been limited using traditional muscle perfusion measures, which are invasive and risky.

View Article and Find Full Text PDF

Objectives: The Canadian Network for Public Health Intelligence (CNPHI) is a secure, web-based scientific informatics and biosurveillance platform that leverages disparate public health information resources and expertise for the direct benefit of local, regional and national decision makers. CNPHI fosters collaboration and consultation through innovation in disease surveillance, intelligence exchange, research and response to protect, promote and support public health. The objective of this article is to present the CNPHI 'on the go' mobile application, and to discuss preliminary evaluation of the technology.

View Article and Find Full Text PDF

Background: Cerebral blood flow (CBF) is an emerging biomarker for normal aging and neurodegenerative diseases. Arterial spin labeling (ASL) perfusion MRI permits noninvasive quantification of CBF. However, high-quality mapping of CBF from ASL imaging is challenging, largely due to noise.

View Article and Find Full Text PDF

Phenylketonuria (PKU) is a genetic disease that is characterized by an inability to metabolize phenylalanine (Phe), which can result in neurotoxicity. To provide a potential alternative to a protein-restricted diet, we engineered Escherichia coli Nissle to express genes encoding Phe-metabolizing enzymes in response to anoxic conditions in the mammalian gut. Administration of our synthetic strain, SYNB1618, to the Pah PKU mouse model reduced blood Phe concentration by 38% compared with the control, independent of dietary protein intake.

View Article and Find Full Text PDF

Purpose: To extend the null signal method (NSM) for B mapping to 3 T magnetic resonance imaging (MRI).

Background: The NSM operates in the steady state regime and exploits the linearity of the spoiled gradient recalled echo (SPGR) signal around the 180° flip angle (FA). Using linear regression, B maps are derived from three SPGR images acquired at different FAs with a short repetition time.

View Article and Find Full Text PDF

Introduction: We investigated brain demyelination in aging, mild cognitive impairment (MCI), and dementia using a direct magnetic resonance imaging marker of myelin.

Methods: Brains of young and old controls, and old subjects with MCI, Alzheimer's disease, or vascular dementia were scanned using our recently developed myelin water fraction (MWF) mapping technique, which provides greatly improved accuracy over previous comparable methods. Maps of MWF, a direct and specific myelin measure, and relaxation times and magnetization transfer ratio, indirect and nonspecific measures, were constructed.

View Article and Find Full Text PDF

Purpose: We applied our recently introduced Bayesian analytic method to achieve clinically-feasible in-vivo mapping of the proteoglycan water fraction (PgWF) of human knee cartilage with improved spatial resolution and stability as compared to existing methods.

Materials And Methods: Multicomponent driven equilibrium single-pulse observation of T and T (mcDESPOT) datasets were acquired from the knees of two healthy young subjects and one older subject with previous knee injury. Each dataset was processed using Bayesian Monte Carlo (BMC) analysis incorporating a two-component tissue model.

View Article and Find Full Text PDF

This work characterizes the effect of lipid and noise signals on muscle diffusion parameter estimation in several conventional and non-Gaussian models, the ultimate objectives being to characterize popular fat suppression approaches for human muscle diffusion studies, to provide simulations to inform experimental work and to report normative non-Gaussian parameter values. The models investigated in this work were the Gaussian monoexponential and intravoxel incoherent motion (IVIM) models, and the non-Gaussian kurtosis and stretched exponential models. These were evaluated via simulations, and in vitro and in vivo experiments.

View Article and Find Full Text PDF