We created GNQA, a generative pre-trained transformer (GPT) knowledge base driven by a performant retrieval augmented generation (RAG) with a focus on aging, dementia, Alzheimer's and diabetes. We uploaded a corpus of three thousand peer reviewed publications on these topics into the RAG. To address concerns about inaccurate responses and GPT 'hallucinations', we implemented a context provenance tracking mechanism that enables researchers to validate responses against the original material and to get references to the original papers.
View Article and Find Full Text PDFGenerating a defined set of genetic constructs within a large combinatorial space provides a powerful method for engineering novel biological functions. However, the process of assembling more than a few specific DNA sequences can be costly, time consuming and error prone. Even if a correct theoretical construction scheme is developed manually, it is likely to be suboptimal by any number of cost metrics.
View Article and Find Full Text PDF