Publications by authors named "Christopher Baccei"

Multiple sclerosis (MS) is a chronic and debilitating neurological disease that results in inflammatory demyelination. While endogenous remyelination helps to recover function, this restorative process tends to become less efficient over time. Currently, intense efforts aimed at the mechanisms that promote remyelination are being considered promising therapeutic approaches.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurological disease characterized by inflammatory demyelination that disrupts neuronal transmission resulting in neurodegeneration progressive disability. While current treatments focus on immunosuppression to limit inflammation and further myelin loss, no approved therapies effectively promote remyelination to mitigate the progressive disability associated with chronic demyelination. Lysophosphatidic acid (LPA) is a pro-inflammatory lipid that is upregulated in MS patient plasma and cerebrospinal fluid (CSF).

View Article and Find Full Text PDF

Structure-activity relationship studies led to the discovery of PIPE-3297, a fully efficacious and selective kappa opioid receptor (KOR) agonist. PIPE-3297, a potent activator of G-protein signaling (GTPγS EC = 1.1 nM, 91% ), did not elicit a β-arrestin-2 recruitment functional response ( < 10%).

View Article and Find Full Text PDF

The discovery of PIPE-359, a brain-penetrant and selective antagonist of the muscarinic acetylcholine receptor subtype 1 is described. Starting from a literature-reported M antagonist, linker replacement and structure-activity relationship investigations of the eastern 1-(pyridinyl)piperazine led to the identification of a novel, potent, and selective antagonist with good MDCKII-MDR1 permeability. Continued semi-iterative positional scanning facilitated improvements in the metabolic and hERG profiles, which ultimately delivered PIPE-359.

View Article and Find Full Text PDF

We previously published on the design and synthesis of novel, potent and selective PPARα antagonists suitable for either i.p. or oral in vivo administration for the potential treatment of cancer.

View Article and Find Full Text PDF

Peroxisome-proliferator activated receptors (PPAR) are members of the nuclear hormone receptor superfamily which regulate gene transcription. PPARα is a key regulator of lipid homeostasis and a negative regulator of inflammation. Under conditions of metabolic stress such as fasting or glucose deprivation, PPARα is upregulated in order to control gene expression necessary for processing alternate fuel sources (e.

View Article and Find Full Text PDF

The discovery and SAR of a novel series of potent and selective PPARα antagonists are herein described. Exploration of replacements for the labile acyl sulfonamide linker led to a biaryl sulfonamide series of which compound 33 proved to be suitable for further profiling in vivo. Compound 33 demonstrated excellent potency, selectivity against other nuclear hormone receptors, and good pharmacokinetics in mouse.

View Article and Find Full Text PDF

The potent 5-lipoxygenase-activating protein (FLAP) inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxypyridin-3-yl)benzyl]-5-(5-methylpyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethylpropionic acid 11cc is described (AM803, now GSK2190915). Building upon AM103 (1) (Hutchinson et al. J.

View Article and Find Full Text PDF

Biphenylacetic acid (5) was identified through a library screen as an inhibitor of the prostaglandin D(2) receptor DP2 (CRTH2). Optimization for potency and pharmacokinetic properties led to a series of selective CRTH2 antagonists. Compounds demonstrated potency in a human DP2 binding assay and a human whole blood eosinophil shape change assay, as well as good oral bioavailability in rat and dog, and efficacy in a mouse model of allergic rhinitis following oral dosing.

View Article and Find Full Text PDF

The prostaglandin D(2) (PGD(2)) receptor type 2 (DP2) is a G protein-coupled receptor that has been shown to be involved in a variety of allergic diseases, including allergic rhinitis, asthma, and atopic dermatitis. In this study, we describe the preclinical pharmacological and pharmacokinetic properties of the small-molecule DP2 antagonist [2'-(3-benzyl-1-ethyl-ureidomethyl)-6-methoxy-4'-trifluoromethyl-biphenyl-3-yl]-acetic acid (AM211). We determine that AM211 has high affinity for human, mouse, rat, and guinea pig DP2 and it shows selectivity over other prostanoid receptors and enzymes.

View Article and Find Full Text PDF

Compound 21 (AM432) was identified as a potent and selective antagonist of the DP(2) receptor (CRTH2). Modification of a bi-aryl core identified a series of tri-aryl antagonists of which compound 21 proved a viable clinical candidate. AM432 shows excellent potency in a human whole blood eosinophil shape change assay with prolonged incubation, a comparatively long off-rate from the DP(2) receptor, excellent pharmacokinetics in dog and in vivo activity in two mouse models of inflammatory disease after oral dosing.

View Article and Find Full Text PDF

AM643 (compound 6, 3-{3-tert-butylsulfanyl-1-[4-(5-methoxy-pyrimidin-2-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid) was identified as a potential candidate for formulation as a topical agent for the treatment of skin disorders involving leukotriene production. Dermal application of 6 using a prototypical vehicle in a murine ear arachidonic acid model showed significant reduction in the concentrations of leukotrienes in mouse skin with concomitant reduction in ear swelling.

View Article and Find Full Text PDF

We evaluated the in vivo pharmacological properties of AM803 3-[3-tert-butylsulfanyl-1-[4-(6-ethoxy-pyridin-3-yl)-benzyl]-5-(5-methyl-pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid, a selective five-lipoxygenase-activating protein (FLAP) inhibitor, using rat and mouse models of acute inflammation. Oral administration of AM803 (1 mg/kg) resulted in sustained inhibition of ex vivo ionophore-challenged whole blood LTB4 biosynthesis with >90% inhibition for up to 12 h and an EC50 of approximately 7 nM. When rat lungs were challenged in vivo with calcium-ionophore, AM803 inhibited LTB4 and cysteinyl leukotriene (CysLT) production with ED50s of 0.

View Article and Find Full Text PDF

Prostaglandin D(2) (PGD(2)) is one of a family of biologically active lipids derived from arachidonic acid via the action of COX-1 and COX-2. PGD(2) is released from mast cells and binds primarily to two G protein-coupled receptors, namely DP1 and DP2, the latter also known as chemoattractant receptor-homologous molecule expressed on Th2 cells. DP2 is predominantly expressed on eosinophils, Th2 cells, and basophils, but it is also expressed to a lesser extent on monocytes, mast cells, and epithelial cells.

View Article and Find Full Text PDF

A series of potent 5-lipoxygenase-activating protein (FLAP) inhibitors are herein described. SAR studies focused on the discovery of novel alicyclic moieties appended to an indole core to optimize potency, physical properties and off-target activities. Subsequent SAR on the N-benzyl substituent of the indole led to the discovery of compound 39 (AM679) which showed potent inhibition of leukotrienes in human blood and in a rodent bronchoalvelolar lavage (BAL) challenge model.

View Article and Find Full Text PDF

Leukotrienes (LTs) are proinflammatory lipid mediators synthesized by the conversion of arachidonic acid (AA) to LTA(4) by the enzyme 5-lipoxygenase (5-LO) in the presence of 5-LO-activating protein (FLAP). 3-[3-tert-Butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (AM103) is a novel selective FLAP inhibitor in development for the treatment of respiratory conditions such as asthma. In a rat ex vivo whole-blood calcium ionophore-induced LTB(4) assay, AM103 (administered orally at 1 mg/kg) displayed >50% inhibition for up to 6 h with a calculated EC(50) of approximately 60 nM.

View Article and Find Full Text PDF

The potent and selective 5-lipoxygenase-activating protein leukotriene synthesis inhibitor 3-[3-tert-butylsulfanyl-1-[4-(6-methoxy-pyridin-3-yl)-benzyl]-5-(pyridin-2-ylmethoxy)-1H-indol-2-yl]-2,2-dimethyl-propionic acid (11j) is described. Lead optimization was designed to afford compounds with superior in vitro and in vivo inhibition of leukotriene synthesis in addition to having excellent pharmacokinetics and safety in rats and dogs. The key structural features of these new compounds are incorporation of heterocycles on the indole N-benzyl substituent and replacement of the quinoline group resulting in compounds with excellent in vitro and in vivo activities, superior pharmacokinetics, and improved physical properties.

View Article and Find Full Text PDF

The synthesis of a series of tricyclic antagonists for the prostaglandin D(2) receptor DP2 (CRTH2) is disclosed. The activities of the compounds were evaluated in a human DP2 binding assay and a human whole blood eosinophil shape change assay. Potential metabolic liabilities of the compounds were addressed through in vitro CYP studies.

View Article and Find Full Text PDF

The present study used an elevated platform procedure to investigate the effects of diazepam, a CRF1 antagonist CP-154,526 and a group II mGlu2/3 receptor agonist LY379268 on stress-evoked increase in extracellular norepinephrine (NE). Pretreatment with either diazepam (1 mg/kg, i.p.

View Article and Find Full Text PDF

Herein we disclose the discovery of a new class of positive allosteric potentiators of the metabotropic glutamate receptor 2 (mGlu2), phenyl-tetrazolyl acetophenones, e.g. 1-(2-hydroxy-3-propyl-4-[4-[4-(2H-tetrazol-5-yl)phenoxy]butoxy]phenyl) ethanone (4).

View Article and Find Full Text PDF

Group II mGlu receptor agonists (eg LY379268 and LY354740) have been shown to reverse many of the behavioral responses to PCP as well as glutamate release elicited by PCP and ketamine. In the present set of experiments, we used in vivo microdialysis to show that, in addition to reversing PCP- and ketamine-evoked glutamate release, group II mGlu receptor stimulation also prevents ketamine-evoked norepinephrine (NE) release. Pretreating animals with the mixed 2/3 metabotropic glutamate (mGlu2/3) receptor agonist LY379268 (0.

View Article and Find Full Text PDF